skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: CAFQA: Clifford Ansatz For Quantum Accuracy
Variational Quantum Algorithms (VQAs) rely upon the iterative optimization of a parameterized unitary circuit with respect to an objective function. Since quantum machines are noisy and expensive resources, it is imperative to choose a VQA's ansatz appropriately and its initial parameters to be close to optimal. This work tackles the problem of finding initial ansatz parameters by proposing CAFQA, a Clifford ansatz for quantum accuracy. The CAFQA ansatz is a hardware-efficient circuit built with only Clifford gates. In this ansatz, the initial parameters for the tunable gates are chosen by searching efficiently through the Clifford parameter space via classical simulation, thereby producing a suitable stabilizer state. The stabilizer states produced are shown to always equal or outperform traditional classical initialization (e.g., Hartree-Fock), and often produce high accuracy estimations prior to quantum exploration. Furthermore, the technique is classically suited since a) Clifford circuits can be exactly simulated classically in polynomial time and b) the discrete Clifford space, while scaling exponentially in the number of qubits, is searched efficiently via Bayesian Optimization. For the Variational Quantum Eigensolver (VQE) task of molecular ground state energy estimation up to 20 qubits, CAFQA's Clifford Ansatz achieves a mean accuracy of near 99%, recovering as much as 99.99% of the correlation energy over Hartree-Fock. Notably, the scalability of the approach allows for preliminary ground state energy estimation of the challenging Chromium dimer with an accuracy greater than Hartree-Fock. With CAFQA's initialization, VQA convergence is accelerated by a factor of 2.5x. In all, this work shows that stabilizer states are an accurate ansatz initialization for VQAs. Furthermore, it highlights the potential for quantum-inspired classical techniques to support VQAs.  more » « less
Award ID(s):
1818914
NSF-PAR ID:
10339353
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Classical computing plays a critical role in the advancement of quantum frontiers in the NISQ era. In this spirit, this work uses classical simulation to bootstrap Variational Quantum Algorithms (VQAs). VQAs rely upon the iterative optimization of a parameterized unitary circuit (ansatz) with respect to an objective function. Since quantum machines are noisy and expensive resources, it is imperative to classically choose the VQA ansatz initial parameters to be as close to optimal as possible to improve VQA accuracy and accelerate their convergence on today’s devices. This work tackles the problem of finding a good ansatz initialization, by proposing CAFQA, a Clifford Ansatz For Quantum Accuracy. The CAFQA ansatz is a hardware-efficient circuit built with only Clifford gates. In this ansatz, the parameters for the tunable gates are chosen by searching efficiently through the Clifford parameter space via classical simulation. The resulting initial states always equal or outperform traditional classical initialization (e.g., Hartree-Fock), and enable high-accuracy VQA estimations. CAFQA is well-suited to classical computation because: a) Clifford-only quantum circuits can be exactly simulated classically in polynomial time, and b) the discrete Clifford space is searched efficiently via Bayesian Optimization. For the Variational Quantum Eigensolver (VQE) task of molecular ground state energy estimation (up to 18 qubits), CAFQA’s Clifford Ansatz achieves a mean accuracy of nearly 99% and recovers as much as 99.99% of the molecular correlation energy that is lost in Hartree-Fock initialization. CAFQA achieves mean accuracy improvements of 6.4x and 56.8x, over the state-of-the-art, on different metrics. The scalability of the approach allows for preliminary ground state energy estimation of the challenging chromium dimer (Cr2) molecule. With CAFQA’s high-accuracy initialization, the convergence of VQAs is shown to accelerate by 2.5x, even for small molecules. Furthermore, preliminary exploration of allowing a limited number of non-Clifford (T) gates in the CAFQA framework, shows that as much as 99.9% of the correlation energy can be recovered at bond lengths for which Clifford-only CAFQA accuracy is relatively limited, while remaining classically simulable. 
    more » « less
  2. Quantum error-correcting codes can be used to protect qubits involved in quantum computation. This requires that logical operators acting on protected qubits be translated to physical operators (circuits) acting on physical quantum states. We propose a mathematical framework for synthesizing physical circuits that implement logical Clifford operators for stabilizer codes. Circuit synthesis is enabled by representing the desired physical Clifford operator in CN ×N as a 2m × 2m binary sym- plectic matrix, where N = 2m. We show that for an [m, m − k] stabilizer code every logical Clifford operator has 2k(k+1)/2 symplectic solutions, and we enumerate them efficiently using symplectic transvections. The desired circuits are then obtained by writing each of the solutions as a product of elementary symplectic matrices. For a given operator, our assembly of all of its physical realizations enables optimization over them with respect to a suitable metric. Our method of circuit synthesis can be applied to any stabilizer code, and this paper provides a proof of concept synthesis of universal Clifford gates for the well- known [6, 4, 2] code. Programs implementing our algorithms can be found at https://github.com/nrenga/symplectic-arxiv18a. 
    more » « less
  3. We advance the characterization of complexity in quantum many-body systems by examiningWW-states embedded in a spin chain. Such states show an amount of non-stabilizerness or “magic”, measured as the Stabilizer Rényi Entropy, that grows logarithmically with the number of qubits/spins. We focus on systems whose Hamiltonian admits a classical point with extensive degeneracy. Near these points, a Clifford circuit can convert the ground state into aWW-state, while in the rest of the phase to which the classical point belongs, it is dressed with local quantum correlations. Topological frustrated quantum spin-chains host phases with the desired phenomenology, and we show that their ground state’s Stabilizer Rényi Entropy is the sum of that of theWW-states plus an extensive local contribution. Our work reveals thatWW-states/frustrated ground states display a non-local degree of complexity that can be harvested as a quantum resource and has no counterpart in GHZ states/non-frustrated systems.

     
    more » « less
  4. Abstract

    To achieve universal quantum computation via general fault-tolerant schemes, stabilizer operations must be supplemented with other non-stabilizer quantum resources. Motivated by this necessity, we develop a resource theory for magic quantum channels to characterize and quantify the quantum ‘magic’ or non-stabilizerness of noisy quantum circuits. For qudit quantum computing with odd dimensiond, it is known that quantum states with non-negative Wigner function can be efficiently simulated classically. First, inspired by this observation, we introduce a resource theory based on completely positive-Wigner-preserving quantum operations as free operations, and we show that they can be efficiently simulated via a classical algorithm. Second, we introduce two efficiently computable magic measures for quantum channels, called the mana and thauma of a quantum channel. As applications, we show that these measures not only provide fundamental limits on the distillable magic of quantum channels, but they also lead to lower bounds for the task of synthesizing non-Clifford gates. Third, we propose a classical algorithm for simulating noisy quantum circuits, whose sample complexity can be quantified by the mana of a quantum channel. We further show that this algorithm can outperform another approach for simulating noisy quantum circuits, based on channel robustness. Finally, we explore the threshold of non-stabilizerness for basic quantum circuits under depolarizing noise.

     
    more » « less
  5. Quantum chemistry is a promising application for noisy intermediate-scale quantum (NISQ) devices. However, quantum computers have thus far not succeeded in providing solutions to problems of real scientific significance, with algorithmic advances being necessary to fully utilise even the modest NISQ machines available today. We discuss a method of ground state energy estimation predicated on a partitioning the molecular Hamiltonian into two parts: one that is noncontextual and can be solved classically, supplemented by a contextual component that yields quantum corrections obtained via a Variational Quantum Eigensolver (VQE) routine. This approach has been termed Contextual Subspace VQE (CS-VQE), but there are obstacles to overcome before it can be deployed on NISQ devices. The problem we address here is that of the ansatz - a parametrized quantum state over which we optimize during VQE. It is not initially clear how a splitting of the Hamiltonian should be reflected in our CS-VQE ansätze. We propose a 'noncontextual projection' approach that is illuminated by a reformulation of CS-VQE in the stabilizer formalism. This defines an ansatz restriction from the full electronic structure problem to the contextual subspace and facilitates an implementation of CS-VQE that may be deployed on NISQ devices. We validate the noncontextual projection ansatz using a quantum simulator, with results obtained herein for a suite of trial molecules. 
    more » « less