skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Entanglement Dynamics From Random Product States: Deviation From Maximal Entanglement
Award ID(s):
1818914
PAR ID:
10339359
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE Transactions on Information Theory
Volume:
68
Issue:
5
ISSN:
0018-9448
Page Range / eLocation ID:
3200 to 3207
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the entanglement contour and partial entanglement entropy (PEE) in quantum field theories in 3 and higher dimensions. The entanglement entropy is evaluated from a certain limit of the PEE with a geometric regulator. In the context of the entanglement contour, we classify the geometric regulators, study their difference from the UV regulators. Furthermore, for spherical regions in conformal field theories (CFTs) we find the exact relation between the UV and geometric cutoff, which clarifies some subtle points in the previous literature. We clarify a subtle point of the additive linear combination (ALC) proposal for PEE in higher dimensions. The subset entanglement entropies in the ALC proposal should all be evaluated as a limit of the PEE while excluding a fixed class of local-short-distance correlation. Unlike the 2-dimensional configurations, naively plugging the entanglement entropy calculated with a UV cutoff will spoil the validity of the ALC proposal. We derive the entanglement contour function for spherical regions, annuli and spherical shells in the vacuum state of general-dimensional CFTs on a hyperplane. 
    more » « less
  2. null (Ed.)
  3. In a physical system with conformal symmetry, observables depend on cross-ratios, measures of distance invariant under global conformal transformations (conformal geometry for short). We identify a quantum information-theoretic mechanism by which the conformal geometry emerges at the gapless edge of a 2+1D quantum many-body system with a bulk energy gap. We introduce a novel pair of information-theoretic quantities(\mathfrak{c}_{\textrm{tot}}, \eta) ( 𝔠 tot , η ) that can be defined locally on the edge from the wavefunction of the many-body system, without prior knowledge of any distance measure. We posit that, for a topological groundstate, the quantity\mathfrak{c}_{\textrm{tot}} 𝔠 tot is stationary under arbitrary variations of the quantum state, and study the logical consequences. We show that stationarity, modulo an entanglement-based assumption about the bulk, implies (i)\mathfrak{c}_{\textrm{tot}} 𝔠 tot is a non-negative constant that can be interpreted as the total central charge of the edge theory. (ii)\eta η is a cross-ratio, obeying the full set of mathematical consistency rules, which further indicates the existence of a distance measure of the edge with global conformal invariance. Thus, the conformal geometry emerges from a simple assumption on groundstate entanglement. We show that stationarity of\mathfrak{c}_{\textrm{tot}} 𝔠 tot is equivalent to a vector fixed-point equation involving\eta η , making our assumption locally checkable. We also derive similar results for 1+1D systems under a suitable set of assumptions. 
    more » « less