skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Awareness Is Not Enough: Frequent Use of Water Pollution Information and Changes to Risky Behavior
Hazard information plays an important role in how risk perceptions are formed and what actions are taken in response to risk. While past studies have shown that information on water and air pollution is associated with changes to individual behavior, there is a need for examination of water quality information in the context of environmental disturbances. This study fills that gap by examining water pollution in an active industrial region of the United States—the Galveston Bay of Texas. Using original survey data collected in 2019 of 525 adults living in the Galveston Bay region, logistic regression was used to analyze the association of awareness and use of water pollution information on changes to outdoor activities and consumption of drinking water and/or seafood. Controls for chronic and acute exposure to environmental hazards, environmental knowledge and experience, and demographics were included in the model. The findings indicate frequent use of water quality information is significantly associated with action to reduce risk. On average, an individual who checks water pollution monitoring every day is 26% and 33% more likely to change their outdoor activities and consumption behavior, respectively, than someone who is not aware of this information. There is a need for improvement in pollution data collection and the development of a risk communication framework that facilitates the dissemination of this information in relevant, accessible, and credible ways.  more » « less
Award ID(s):
1936174
PAR ID:
10339437
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Sustainability
Volume:
12
Issue:
20
ISSN:
2071-1050
Page Range / eLocation ID:
8695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Science for Society Buildings account for a significant fraction of the land area in cities and actively exchange air with their proximate outdoor environments via mechanical ventilation systems. However, the direct impact of buildings on urban air pollution remains poorly characterized. Due to reductions in traffic-associated emissions of volatile organic compounds (VOCs), volatile chemical products, which are widely used inside buildings, have become a major VOC source in urban areas. Indoor-generated VOCs are likely to be an important contributor to the VOC burden of the urban atmosphere, and ventilation systems provide a pathway for VOCs to be released outdoors. Here, we show how modern buildings act as significant emission sources of VOCs for the outdoor environment. Our results demonstrate that future air quality monitoring efforts in cities need to account for direct VOC discharge from buildings in order to capture emerging sources of environmental pollution that can impact the climate and human health. Summary Urban air undergoes transformations as it is actively circulated throughout buildings via ventilation systems. However, the influence of air exchange between outdoor and indoor atmospheres on urban air pollution is not well understood. Here, we quantify how buildings behave as a dynamic source and sink for urban air pollutants via high-resolution online mass spectrometry measurements. During our field campaign in a high-performance office building, we observed that the building continually released volatile organic compounds (VOCs) into the urban air and removed outdoor ozone and fine particulate matter. VOC emissions from people, their activities, and surface reservoirs result in significant VOC discharge from the building to the outdoors. Per unit area, building emissions of VOCs are comparable to traffic, industrial, and biogenic emissions. The building source-sink behavior changed dynamically with occupancy and ventilation conditions. Our results demonstrate that buildings can directly influence urban air quality due to substantial outdoor-indoor air exchange. 
    more » « less
  2. null (Ed.)
    This paper presents a water intake monitoring system for animal agriculture that tracks individual animal watering behavior, water quality, and water consumption. The system is deployed in an outdoor environment to reach remote areas. The proposed system integrates motion detectors, cameras, water level sensors, flow meters, Radio-Frequency Identification (RFID) systems, and water temperature sensors. The data collection and control are performed using Arduino microcontrollers with custom-designed circuit boards. The data associated with each drinking event are water consumption, water temperature, drinking duration, animal identification, and pictures. The data and pictures are automatically stored on Secure Digital (SD) cards. The prototypes are deployed in a remote grazing site located in Tucumcari, New Mexico, USA. The system can be used to perform water consumption and watering behavior studies of both domestic animals and wild animals. The current system automatically records the drinking behavior of 29 cows in a two-week duration in the remote ranch. 
    more » « less
  3. Abstract Alongside global climate change, many freshwater ecosystems are experiencing substantial shifts in the concentrations and compositions of salt ions coming from both land and sea. We synthesize a risk framework for anticipating how climate change and increasing salt pollution coming from both land and saltwater intrusion will trigger chain reactions extending from headwaters to tidal waters. Salt ions trigger ‘chain reactions,’ where chemical products from one biogeochemical reaction influence subsequent reactions and ecosystem responses. Different chain reactions impact drinking water quality, ecosystems, infrastructure, and energy and food production. Risk factors for chain reactions include shifts in salinity sources due to global climate change and amplification of salinity pulses due to the interaction of precipitation variability and human activities. Depending on climate and other factors, salt retention can range from 2 to 90% across watersheds globally. Salt retained in ecosystems interacts with many global biogeochemical cycles along flowpaths and contributes to ‘fast’ and ‘slow’ chain reactions associated with temporary acidification and long-term alkalinization of freshwaters, impacts on nutrient cycling, CO2, CH4, N2O, and greenhouse gases, corrosion, fouling, and scaling of infrastructure, deoxygenation, and contaminant mobilization along the freshwater-marine continuum. Salt also impacts the carbon cycle and the quantity and quality of organic matter transported from headwaters to coasts. We identify the double impact of salt pollution from land and saltwater intrusion on a wide range of ecosystem services. Our salinization risk framework is based on analyses of: (1) increasing temporal trends in salinization of tributaries and tidal freshwaters of the Chesapeake Bay and freshening of the Chesapeake Bay mainstem over 40 years due to changes in streamflow, sea level rise, and watershed salt pollution; (2) increasing long-term trends in concentrations and loads of major ions in rivers along the Eastern U.S. and increased riverine exports of major ions to coastal waters sometimes over 100-fold greater than forest reference conditions; (3) varying salt ion concentration-discharge relationships at U.S. Geological Survey (USGS) sites across the U.S.; (4) empirical relationships between specific conductance and Na+, Cl, SO42−, Ca2+, Mg2+, K+, and N at USGS sites across the U.S.; (5) changes in relationships between concentrations of dissolved organic carbon (DOC) and different salt ions at USGS sites across the U.S.; and (6) original salinization experiments demonstrating changes in organic matter composition, mobilization of nutrients and metals, acidification and alkalinization, changes in oxidation–reduction potentials, and deoxygenation in non-tidal and tidal waters. The interaction of human activities and climate change is altering sources, transport, storage, and reactivity of salt ions and chain reactions along the entire freshwater-marine continuum. Our salinization risk framework helps anticipate, prevent, and manage the growing double impact of salt ions from both land and sea on drinking water, human health, ecosystems, aquatic life, infrastructure, agriculture, and energy production. 
    more » « less
  4. Abstract Despite the proven benefits of natural ventilation (NV) as an effective low-carbon solution to meet growing cooling demand, its effectiveness can be constrained by poor outdoor air quality. Here, we propose a modeling approach that integrates highly granular air pollution data with a coupled EnergyPlus and differential equation airflow model to evaluate how NV potential for space cooling changes when accounting for air pollution exposure (PM2.5). Given the high vulnerability of low-income populations to air pollution and the dearth of energy and thermal comfort research on informal settlements, we applied our model to a typical informal settlement residence in two large Indian cities: New Delhi and Bangalore. Our results indicate that outdoor PM2.5 levels have a significant impact on NV potential especially in highly polluted cities like New Delhi. However, we found that low-cost filtration (MERV 14) increased the NV potential by 25% and protected occupants from harmful exposure to PM2.5 with a minor energy penalty of 6%. We further find that adoption of low-cost filtration is a viable low-carbon solution pathway as it provides both thermal comfort and exposure protection at 65% less energy intensity—energy intensity reduced to 60 kWh m−2from 173.5 kWh m−2in case of adoption of potentially unaffordable full mechanical air conditioning. Our work highlights ample opportunities for reducing both air pollution and energy consumption in informal settlements across major Indian cities. Finally, our work can guide building designers and policymakers to reform building codes for adopting low-cost air filtration coupled with NV and subsequently reduce energy demand and associated environmental emissions. 
    more » « less
  5. Reducing nonpoint source pollution is a complex social dilemma involving externalities, information asymmetries, and coordination problems. Using a laboratory experiment, this research investigates how mascots, public information, and data visualization can improve collective group behavior to address a social dilemma. Results show that groups reduce pollution in the experiment when a community mascot expresses negative emotions in response to poor water quality outcomes. Additionally, groups pollute less when they are provided public information about water quality, and abatement is greater when feedback is negatively framed. This study demonstrates how novel nonmonetary incentives can be used to achieve a collective environmental goal. (JELD79, Q25, Q52, Q53, D83) 
    more » « less