skip to main content

Title: Natural ventilation versus air pollution: assessing the impact of outdoor pollution on natural ventilation potential in informal settlements in India

Despite the proven benefits of natural ventilation (NV) as an effective low-carbon solution to meet growing cooling demand, its effectiveness can be constrained by poor outdoor air quality. Here, we propose a modeling approach that integrates highly granular air pollution data with a coupled EnergyPlus and differential equation airflow model to evaluate how NV potential for space cooling changes when accounting for air pollution exposure (PM2.5). Given the high vulnerability of low-income populations to air pollution and the dearth of energy and thermal comfort research on informal settlements, we applied our model to a typical informal settlement residence in two large Indian cities: New Delhi and Bangalore. Our results indicate that outdoor PM2.5 levels have a significant impact on NV potential especially in highly polluted cities like New Delhi. However, we found that low-cost filtration (MERV 14) increased the NV potential by 25% and protected occupants from harmful exposure to PM2.5 with a minor energy penalty of 6%. We further find that adoption of low-cost filtration is a viable low-carbon solution pathway as it provides both thermal comfort and exposure protection at 65% less energy intensity—energy intensity reduced to 60 kWh m−2from 173.5 kWh m−2in case of adoption of potentially unaffordable full mechanical air conditioning. Our work highlights ample opportunities for reducing both air pollution and energy consumption in informal settlements across major Indian cities. Finally, our work can guide building designers and policymakers to reform building codes for adopting low-cost air filtration coupled with NV and subsequently reduce energy demand and associated environmental emissions.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Infrastructure and Sustainability
Page Range / eLocation ID:
Article No. 025002
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. — In this paper, we first develop a low-cost surfacebased air pollutants measurement system for the real-time air pollution monitoring and forecasting applications. Then, we compare the performance achieved by the proposed system in real-time urban environment with currently used static monitoring stations by the governmental environmental protection agency (EPA). The proposed design uses particulate matter, humidity, and temperature sensors to measure the values of the air pollutant that determines the value of the Air Quality Index (AQI). The SD storage device is interfaced with the system to store the large amount of data sensed by the system. The Arduino UNO-based processing unit integrates with the sensing units to process and control the sensed air pollutants data. The proposed system is deployed in indoors and outdoor environment in under served minority communities in big cities to illustrate real-time environmental pollution measurement and monitoring applications. The system can measure, monitor and alert the level of PM2.5 and PM10 components of the AQI as they are often the main pollutant that determines the AQI value. The performance of the proposed system compares with the expensive data logger-based EPA-approved LDEQ sensorsbased air quality monitoring system. Our analysis shows that the measurement and monitoring performance of the proposed system is comparable with the EPA-approved LDEQ sensorsbased air quality monitoring system. The analysis also shows that there is a spatial and temporal variation of PM2.5 and PM10 values even for sites that are less than a mile apart. The interaction interphase of the system is simpler and easier to use as compared with bulky display systems in traditional EPA-based monitoring systems. In contrast with the traditional data logger-based system, the proposed system is smaller and quicker to deploy to test specific air pollutants in interested urban and rural locations . 
    more » « less
  2. The large-scale deployment of Do-it-yourself (DIY) air cleaners, especially in communities that historically bear the brunt of air pollution exposure-related injustices, provides communities a cost-effective option to reduce personal indoor exposure to particulate matter. In this study, we developed nine air cleaner prototypes, altering filter depth and the number and type of filters, and compared their PM2.5 removal effectiveness and maintenance-related parameters prior to deployment in North Denver, Colorado homes. Prototypes containing multiple high efficiency particulate air filters with a minimum reporting value of 13 (MERV13) had higher clean air delivery rates (CADR, >300 m3 h−1) compared to prototypes using a single filter (100–200 m3 h−1), but single-filter designs had comparable values of CADR normalized by initial and annual operating costs. Based on performance, cost, build time, and feedback from the community regarding concerns related to volatile organic compound exposure, the selected prototype (P9) used a combination of an activated carbon filter and single MERV13 filter with a 10.16 cm (4-inch) depth. Following this assessment, 120 of the selected air cleaner prototypes were built and deployed in homes around the communities in North Denver for two separate cohorts; feedback regarding their usage over the course of the deployment showed that in addition to the increased noise levels perceived by the participants, factors such as cold air flow from the air cleaner impacting the thermal comfort and aesthetics of the design reduced their usage time in homes. Future designs of DIY air cleaners could incorporate this feedback to help design improved features such as quieter air cleaners and real-time pollutant monitoring feedback to prompt users to keep them operational at all times of the day.

    more » « less
  3. Abstract

    A differentiated urban metabolism methodology is developed to quantify inequality and inform social equity in urban infrastructure strategies aimed at mitigating local in-boundary PM2.5 and co-beneficially reducing transboundary greenhouse gas (GHG) emissions. The method differentiates community-wide local PM2.5 and transboundary GHG emission contributions by households of different income strata, alongside commercial and industrial activities. Applied in three Indian cities (Delhi, Coimbatore, and Rajkot) through development of new data sets, method yields key insights that across all three cities, top-20% highest-income households dominated motorized transportation, electricity, and construction activities, while poorest-20% homes dominated biomass and kerosene use, resulting in the top-20% households contributing more than three times GHGs as the bottom-20% homes. Further, after including commercial and industrial users, top-20% households contributed as much or more in-boundary PM2.5 emissions thanallcommercial ORallindustrial emitters (e.g. Delhi’s top-20% homes contributed 21% of in-boundary PM2.5 similar to industries at 21%. These results enabled co-benefit analysis of various infrastructure transition strategies on the horizon, finding only three could yield both significant GHG and PM2.5 reductions (>2%-each): (a) Modest 10% efficiency improvements among top-20% households, industry and commercial sectors, requiring a focus on wealthiest homes; (b) Phasing out all biomass and kerosene use within cities (impacting poorest); (c) Replacing gas and diesel vehicles with renewable electric vehicles. The differentiated PM2.5 and GHG emissions data-informed social equity in the design of the three co-beneficial infrastructure transitions by: (a)-prioritizing free/subsidized clean cooking fuels to poorest homes; (b)-increasing electricity block rates and behavioral nudging for wealthiest homes; and, (c)-prioritizing electrification of mass transit and promoting electric two-wheelers ahead of providing subsidies for electric cars, where the free-rider phenomenon can occur, which benefits wealthiest homes. The methodology is broadly translatable to cities worldwide, while the policy insights are relevant to rapidly urbanizing Asia and Africa to advance clean, low-carbon urban infrastructure transitions.

    more » « less
  4. null (Ed.)
    Short-term exposure to fine particulate matter (PM2.5) pollution is linked to numerous adverse health effects. Pollution episodes, such as wildfires, can lead to substantial increases in PM2.5 levels. However, sparse regulatory measurements provide an incomplete understanding of pollution gradients. Here, we demonstrate an infrastructure that integrates community-based measurements from a network of low-cost PM2.5 sensors with rigorous calibration and a Gaussian process model to understand neighborhood-scale PM2.5 concentrations during three pollution episodes (July 4, 2018, fireworks; July 5 and 6, 2018, wildfire; Jan 3−7, 2019, persistent cold air pool, PCAP). The firework/wildfire events included 118 sensors in 84 locations, while the PCAP event included 218 sensors in 138 locations. The model results accurately predict reference measurements during the fireworks (n: 16, hourly root-mean-square error, RMSE, 12.3−21.5 μg/m3, n(normalized)-RMSE: 9−24%), the wildfire (n: 46, RMSE: 2.6−4.0 μg/m3; nRMSE: 13.1−22.9%), and the PCAP (n: 96, RMSE: 4.9−5.7 μg/m3; nRMSE: 20.2−21.3%). They also revealed dramatic geospatial differences in PM2.5 concentrations that are not apparent when only considering government measurements or viewing the US Environmental Protection Agency’s AirNow’s visualizations. Complementing the PM2.5 estimates and visualizations are highly resolved uncertainty maps. Together, these results illustrate the potential for low-cost sensor networks that combined with a data-fusion algorithm and appropriate calibration and training can dynamically and with improved accuracy estimate PM2.5 concentrations during pollution episodes. These highly resolved uncertainty estimates can provide a much-needed strategy to communicate uncertainty to end users. 
    more » « less
  5. We present a novel source attribution approach that incorporates satellite data into GEOS-Chem adjoint simulations to characterize the species-specific, regional, and sectoral contributions of daily emissions for 3 air pollutants: fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2). This approach is implemented for Washington, DC, first for 2011, to identify urban pollution sources, and again for 2016, to examine the pollution response to changes in anthropogenic emissions. In 2011, anthropogenic emissions contributed an estimated 263 (uncertainty: 130–444) PM2.5- and O3-attributable premature deaths and 1,120 (391–1795) NO2 attributable new pediatric asthma cases in DC. PM2.5 exposure was responsible for 90% of these premature deaths. On-road vehicle emissions contributed 51% of NO2-attributable new asthma cases and 23% of pollution-attributable premature deaths, making it the largest contributing individual sector to DC’s air pollution–related health burden. Regional emissions, originating from Maryland, Virginia, and Pennsylvania, were the most responsible for pollution-related health impacts in DC, contributing 57% of premature deaths impacts and 89% of asthma cases. Emissions from distant states contributed 34% more to PM2.5 exposure in the wintertime than in the summertime, occurring in parallel with strong wintertime westerlies and a reduced photochemical sink. Emission reductions between 2011 and 2016 resulted in health benefits of 76 (28–149) fewer pollution-attributable premature deaths and 227 (2–617) fewer NO2-attributable pediatric asthma cases. The largest sectors contributing to decreases in pollution-related premature deaths were energy generation units (26%) and on-road vehicles (20%). Decreases in NO2-attributable pediatric asthma cases were mostly due to emission reductions from on-road vehicles (63%). Emission reductions from energy generation units were found to impact PM2.5 more than O3, while on-road vehicle emission reductions impacted O3 proportionally more than PM2.5. This novel method is capable of capturing the sources of urban pollution at fine spatial and temporal scales and is applicable to many urban environments, globally. 
    more » « less