skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Shape Dynamics During Cell Motility in Microscopy Videos
Statistical analysis of shape evolution during cell migration is important for gaining insights into biological processes. This paper develops a time-series model for temporal evolution of cellular shapes during cell motility. It uses elastic shape analysis to represent and analyze shapes of cell boundaries (as planar closed curves), thus separating cell shape changes from cell kinematics. Specifically, it utilizes Transported Square-Root Velocity Field (TSRVF), to map non-Euclidean shape sequences into a Euclidean time series. It then uses PCA to reduce Euclidean dimensions and imposes a Vector Auto-Regression (VAR) model on the resulting low-dimensional time series. Finally, it presents some results from VAR-based statistical analysis: estimation of model parameters and diagnostics, synthesis of new shape sequences, and predictions of future shapes given past shapes.  more » « less
Award ID(s):
1953087 1955154
PAR ID:
10339548
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Image Processing (ICIP)
Page Range / eLocation ID:
2491 to 2495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a generative statistical model for analyzing time series of planar shapes. Using elastic shape analysis, we separate object kinematics (rigid motions and speed variability) from morphological evolution, representing the latter through transported velocity fields (TVFs). A principal component analysis (PCA) based dimensionality reduction of the TVF representation provides a finite-dimensional Euclidean framework, enabling traditional time-series analysis. We then fit a vector auto-regressive (VAR) model to the TVF-PCA time series, capturing the statistical dynamics of shape evolution. To characterize morphological changes,we use VAR model parameters for model comparison, synthesis, and sequence classification. Leveraging these parameters, along with machine learning classifiers, we achieve high classification accuracy. Extensive experiments on cell motility data validate our approach, demonstrating its effectiveness in modeling and classifying migrating cells based on morphological evolution—marking a novel contribution to the field. 
    more » « less
  2. This paper addresses the problem of characterizing statistical distributions of cellular shape populations using shape samples from microscopy image data. This problem is challenging because of the nonlinearity and high-dimensionality of shape manifolds. The paper develops an efficient, nonparametric approach using ideas from k-modal mixtures and kernel estimators. It uses elastic shape analysis of cell boundaries to estimate statistical modes and clusters given shapes around those modes. (Notably, it uses a combination of modal distributions and ANOVA to determine k automatically.) A population is then characterized as k-modal mixture relative to this estimated clustering and a chosen kernel (e.g., a Gaussian or a flat kernel). One can compare and analyze populations using the Fisher-Rao metric between their estimated distributions. We demonstrate this approach for classifying shapes associated with migrations of entamoeba histolytica under different experimental conditions. This framework remarkably captures salient shape patterns and separates shape data for different experimental settings, even when it is difficult to discern class differences visually. 
    more » « less
  3. The problem of using covariates to predict shapes of objects in a regression setting is important in many fields. A formal statistical approach, termed Geodesic regression model, is commonly used for modeling and analyzing relationships between Euclidean predictors and shape responses. Despite its popularity, this model faces several key challenges, including (i) misalignment of shapes due to pre-processing steps, (ii) difficulties in shape alignment due to imaging heterogeneity, and (iii) lack of spatial correlation in shape structures. This paper proposes a comprehensive geodesic factor regression model that addresses all these challenges. Instead of using shapes as extracted from pre-registered data, it takes a more fundamental approach, incorporating alignment step within the proposed regression model and learns them using both pre-shape and covariate data. Additionally, it specifies spatial correlation structures using low-dimensional representations, including latent factors on the tangent space and isotropic error terms. The proposed framework results in substantial improvements in regression performance, as demonstrated through simulation studies and a real data analysis on Corpus Callosum contour data obtained from the ADNI study. 
    more » « less
  4. Abstract Vertical movements can expose individuals to rapid changes in physical and trophic environments—for aquatic fauna, dive profiles from biotelemetry data can be used to quantify and categorize vertical movements. Inferences on classes of vertical movement profiles typically rely on subjective summaries of parameters or statistical clustering techniques that utilize Euclidean matching of vertical movement profiles with vertical observation points. These approaches are prone to subjectivity, error, and bias. We used machine learning approaches on a large dataset of vertical time series (N = 28,217 dives) for 31 post‐nesting leatherback turtles (Dermochelys coriacea). We applied dynamic time warp (DTW) clustering to group vertical movement (dive) time series by their metrics (depth and duration) into an optimal number of clusters. We then identified environmental covariates associated with each cluster using a generalized additive mixed‐effects model (GAMM). A convolutional neural network (CNN) model, trained on standard dive shape types from the literature, was used to classify dives within each DTW cluster by their shape. Two clusters were identified with the DTW approach—these varied in their spatial and temporal distributions, with dependence on environmental covariates, sea surface temperature, bathymetry, sea surface height anomaly, and time‐lagged surface chlorophyllaconcentrations. CNN classification accuracy of the five standard dive profiles was 95%. Subsequent analyses revealed that the two clusters differed in their composition of standard dive shapes, with each cluster dominated by shapes indicative of distinct behaviors (pelagic foraging and exploration, respectively). The use of these two machine learning approaches allowed for discrete behaviors to be identified from vertical time series data, first by clustering vertical movements by their movement metrics (DTW) and second by classifying dive profiles within each cluster by their shapes (CNN). Statistical inference for the identified clusters found distinct relationships with environmental covariates, supporting hypotheses of vertical niche switching and vertically structured foraging behavior. This approach could be similarly applied to the time series of other animals utilizing the vertical dimension in their movements, including aerial, arboreal, and other aquatic species, to efficiently identify different movement behaviors and inform habitat models. 
    more » « less
  5. A factor-augmented vector autoregressive (FAVAR) model is defined by a VAR equation that captures lead-lag correlations amongst a set of observed variables X and latent factors F, and a calibration equation that relates another set of observed variables Y with F and X. The latter equation is used to estimate the factors that are subsequently used in estimating the parameters of the VAR system. The FAVAR model has become popular in applied economic research, since it can summarize a large number of variables of interest as a few factors through the calibration equation and subsequently examine their influence on core variables of primary interest through the VAR equation. However, there is increasing need for examining lead-lag relationships between a large number of time series, while incorporating information from another high-dimensional set of variables. Hence, in this paper we investigate the FAVAR model under high-dimensional scaling. We introduce an appropriate identification constraint for the model parameters, which when incorporated into the formulated optimization problem yields estimates with good statistical properties. Further, we address a number of technical challenges introduced by the fact that estimates of the VAR system model parameters are based on estimated rather than directly observed quantities. The performance of the proposed estimators is evaluated on synthetic data. Further, the model is applied to commodity prices and reveals interesting and interpretable relationships between the prices and the factors extracted from a set of global macroeconomic indicators. 
    more » « less