skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growing farms and groundwater depletion in the Kansas High Plains
Abstract The average farm size has more than doubled within the United States over the last three decades, transforming the agricultural industry and rural farming communities. It is unclear, however, how this ubiquitous trend has affected and is affected by the environment, particularly groundwater resources critical for food production. Here, we leverage a unique multi-decadal dataset of well-level groundwater withdrawals for crop irrigation over the Kansas High Plains Aquifer to determine the interactions between groundwater depletion and growing farms. Holding key technological, management, and environmental variables fixed, we show that doubling a farm’s irrigated cropland decreases groundwater extractions by 2%–5% depending on the initial farm size. However, a corresponding shift by larger farms to different irrigation technologies offsets this reduction in groundwater use, leading to a slight increase in overall groundwater use. We find groundwater depletion increases the likelihood farmland is sold to a larger farm, amplifying the cycle of groundwater depletion and the consolidation of farmland.  more » « less
Award ID(s):
1828571
PAR ID:
10339707
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
8
ISSN:
1748-9326
Page Range / eLocation ID:
084065
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The conversion of biodiversity‐rich woodland to farmland and subsequent management has strong, often negative, impacts on biodiversity. In tropical smallholder agricultural landscapes, the impacts of agriculture on insect communities, both through habitat change and subsequent farmland management, is understudied. The use of agroecological practices has social and agronomic benefits for smallholders. Although ecological co‐benefits of agroecological practices are assumed, systematic empirical assessments of biodiversity effects of agroecological practices are missing, particularly in Africa.In Malawi, we assessed butterfly abundance, species richness, species assemblages and community life‐history traits on 24 paired woodland and smallholder‐managed farmland sites located across a gradient of woodland cover within a 1 km radius. We tested whether habitat type (woodland vs. farmland) and woodland cover at the landscape scale interactively shaped butterfly communities. Farms varied in the implementation of agroecological pest and soil management practices and flowering plant species richness.Farmland had lower butterfly abundances and approximately half the species richness than woodland. Farmland butterfly communities had, on average, a larger wingspan than woodland site communities. Surprisingly, higher woodland cover in the landscape had no effect on butterfly abundance in both habitats. In contrast, species richness was higher with higher woodland cover. Butterfly species assemblages were distinct between wood‐ and farmland and shifted across the woodland cover gradient.Farmland butterfly abundance, but not species richness, was higher with higher flowering plant species richness on farms. Farms with a higher number of agroecological pest management practices had a lower abundance of the dominant butterfly species, but not of rarer species. However, a larger number of agroecological soil management practices was associated with a higher abundance of rarer species.Synthesis and applications: We show that diversified agroecological soil practices and flowering plant richness enhanced butterfly abundance on farms. However, our results suggest that on‐farm measures cannot compensate for the negative effects of continued woodland conversion. Therefore, we call for more active protection of remaining African woodlands in tandem with promoting agroecological soil management practices and on‐farm flowering plant richness to conserve butterflies while benefiting smallholders. 
    more » « less
  2. Abstract There is a lack of data on resources used and food produced at urban farms. This hampers attempts to quantify the environmental impacts of urban agriculture or craft policies for sustainable food production in cities. To address this gap, we used a citizen science approach to collect data from 72 urban agriculture sites, representing three types of spaces (urban farms, collective gardens, individual gardens), in five countries (France, Germany, Poland, United Kingdom, and United States). We answered three key questions about urban agriculture with this unprecedented dataset: (1) What are its land, water, nutrient, and energy demands? (2) How productive is it relative to conventional agriculture and across types of farms? and (3) What are its contributions to local biodiversity? We found that participant farms used dozens of inputs, most of which were organic (e.g., manure for fertilizers). Farms required on average 71.6 L of irrigation water, 5.5 L of compost, and 0.53 m2 of land per kilogram of harvested food. Irrigation was lower in individual gardens and higher in sites using drip irrigation. While extremely variable, yields at well-managed urban farms can exceed those of conventional counterparts. Although farm type did not predict yield, our cluster analysis demonstrated that individually managed leisure gardens had lower yields than other farms and gardens. Farms in our sample contributed significantly to local biodiversity, with an average of 20 different crops per farm not including ornamental plants. Aside from clarifying important trends in resource use at urban farms using a robust and open dataset, this study also raises numerous questions about how crop selection and growing practices influence the environmental impacts of growing food in cities. We conclude with a research agenda to tackle these and other pressing questions on resource use at urban farms. 
    more » « less
  3. Non-crop vegetation, such as hedgerows and cover crops, are important on-farm diversification practices that support biodiversity and ecosystem services; however, information about their rates and patterns of adoption are scarce. We used satellite and aerial imagery coupled with machine learning classification to map the use of hedgerows/windbreaks and winter cover crops in California's Central Coast, a globally important agricultural area of intensive fresh produce production. We expected that adoption of both practices would be relatively low and unevenly distributed across the landscape, with higher levels of adoption found in marginal farmland and in less intensively cultivated areas where the pressure to remove non-crop vegetation may be lower. Our remote sensing classification revealed that only ~6% of farmland had winter cover crops in 2021 and 0.26% of farmland had hedgerows or windbreaks in 2018. Thirty-seven percent of ranch parcels had cover crops on at least 5% of the ranch while 22% of ranches had at least one hedgerow/windbreak. Nearly 16% of farmland had other annual winter crops, some of which could provide services similar to cover crops; however, 60% of farmland had bare soil over the winter study period, with the remainder of farmland classified as perennial crops or strawberries. Hotspot analysis showed significant areas of adoption of both practices in the hillier regions of all counties. Finally, qualitative interviews revealed that adoption patterns were likely driven by interrelated effects of topography, land values, and farming models, with organic, diversified farms implementing these practices in less ideal, lower-value farmland. This study demonstrates how remote sensing coupled with qualitative research can be used to map and interpret patterns of important diversification practices, with implications for tracking policy interventions and targeting resources to assist farmers motivated to expand adoption. 
    more » « less
  4. Abstract We provide a dataset of irrigation water withdrawals by crop, county, year, and water source within the United States. We employ a framework we previously developed to establish a companion dataset to our original estimates. The main difference is that we now use the U.S. Geological Survey (USGS) variable ‘irrigation — total’ to partition PCR-GLOBWB 2 hydrology model estimates, instead of ‘irrigation — crop’ as used in previous estimates. Our findings for Surface Water Withdrawals (SWW), total Groundwater Withdrawals (GWW), and nonrenewable Groundwater Depletion (GWD) are similar to those of prior estimates but now have better spatial coverage, since several states are missing from the USGS ‘irrigation — crop’ variable that was originally used. Irrigation water use increases in this study, since more states are included and ‘irrigation — total’ includes more categories of irrigation than ‘irrigation — crop’. Notably, irrigation in the Mississippi Embayment Aquifer is now captured for rice and soy. We provide nearly 2.5 million data points with this paper (3,142 counties; 13 years; 3 water sources; and 20 crops). 
    more » « less
  5. Abstract Irrigation is increasingly important to agricultural production and supply chains in the United States. In this study, we seek to understand how irrigation (blue) water footprints of production are spatially distributed and how they differ in drought versus non‐drought years. Similarly, we aim to understand the impact of drought on the irrigation virtually embedded in domestic supply chains and exports. To this end, we quantify the blue water footprints of agricultural products per unit mass produced (Virtual Water Content (VWC)) by surface, groundwater, and groundwater depletion sources, and then trace how this water is embedded in domestic agricultural commodity transfers and exports (Virtual Water Transfers (VWT)) for counties in a drought (2012) and non‐drought (2017) year. Overall, we find that total VWC values are larger in drought than non‐drought conditions across commodity groups, driven by surface water withdrawals. Conversely, VWT is larger in non‐drought than drought, driven by larger commodity mass fluxes during non‐drought. Our results highlight the importance of sustainably managing water resources so that they are available to mitigate the impact of future droughts on agricultural production and supply chains. 
    more » « less