skip to main content


Title: Popular decision tree algorithms are provably noise tolerant
Using the framework of boosting, we prove that all impurity-based decision tree learning algorithms, including the classic ID3, C4.5, and CART, are highly noise tolerant. Our guarantees hold under the strongest noise model of nasty noise, and we provide near-matching upper and lower bounds on the allowable noise rate. We further show that these algorithms, which are simple and have long been central to everyday machine learning, enjoy provable guarantees in the noisy setting that are unmatched by existing algorithms in the theoretical literature on decision tree learning. Taken together, our results add to an ongoing line of research that seeks to place the empirical success of these practical decision tree algorithms on firm theoretical footing.  more » « less
Award ID(s):
2006664
NSF-PAR ID:
10339736
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Machine Learning (ICML 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A fundamental task in active learning involves performing a sequence of tests to identify an unknown hypothesis that is drawn from a known distribution. This problem, known as optimal decision tree induction, has been widely studied for decades and the asymptotically best-possible approximation algorithm has been devised for it. We study a generalization where certain test outcomes are noisy, even in the more general case when the noise is persistent, i.e., repeating the test on the scenario gives the same noisy output, disallowing simple repetition as a way to gain confidence. We design new approximation algorithms for both the non-adaptive setting, where the test sequence must be fixed a-priori, and the adaptive setting where the test sequence depends on the outcomes of prior tests. Previous work in the area assumed at most a constant number of noisy outcomes per test and per scenario and provided approximation ratios that were problem dependent (such as the minimum probability of a hypothesis). Our new approximation algorithms provide guarantees that are nearly best-possible and work for the general case of a large number of noisy outcomes per test or per hypothesis where the performance degrades smoothly with this number. Our results adapt and generalize methods used for submodular ranking and stochastic set cover. We evaluate the performance of our algorithms on two natural applications with noise: toxic chemical identification and active learning of linear classifiers. Despite our logarithmic theoretical approximation guarantees, our methods give solutions with cost very close to the information theoretic minimum, demonstrating the effectiveness of our methods. 
    more » « less
  2. We consider the problem of explaining the predictions of an arbitrary blackbox model f: given query access to f and an instance x, output a small set of x's features that in conjunction essentially determines f(x). We design an efficient algorithm with provable guarantees on the succinctness and precision of the explanations that it returns. Prior algorithms were either efficient but lacked such guarantees, or achieved such guarantees but were inefficient. We obtain our algorithm via a connection to the problem of {\sl implicitly} learning decision trees. The implicit nature of this learning task allows for efficient algorithms even when the complexity of~f necessitates an intractably large surrogate decision tree. We solve the implicit learning problem by bringing together techniques from learning theory, local computation algorithms, and complexity theory. Our approach of “explaining by implicit learning” shares elements of two previously disparate methods for post-hoc explanations, global and local explanations, and we make the case that it enjoys advantages of both. 
    more » « less
  3. null (Ed.)
    Regret minimization has proved to be a versatile tool for tree- form sequential decision making and extensive-form games. In large two-player zero-sum imperfect-information games, mod- ern extensions of counterfactual regret minimization (CFR) are currently the practical state of the art for computing a Nash equilibrium. Most regret-minimization algorithms for tree-form sequential decision making, including CFR, require (i) an exact model of the player’s decision nodes, observation nodes, and how they are linked, and (ii) full knowledge, at all times t, about the payoffs—even in parts of the decision space that are not encountered at time t. Recently, there has been growing interest towards relaxing some of those restric- tions and making regret minimization applicable to settings for which reinforcement learning methods have traditionally been used—for example, those in which only black-box access to the environment is available. We give the first, to our knowl- edge, regret-minimization algorithm that guarantees sublinear regret with high probability even when requirement (i)—and thus also (ii)—is dropped. We formalize an online learning setting in which the strategy space is not known to the agent and gets revealed incrementally whenever the agent encoun- ters new decision points. We give an efficient algorithm that achieves O(T 3/4) regret with high probability for that setting, even when the agent faces an adversarial environment. Our experiments show it significantly outperforms the prior algo- rithms for the problem, which do not have such guarantees. It can be used in any application for which regret minimization is useful: approximating Nash equilibrium or quantal response equilibrium, approximating coarse correlated equilibrium in multi-player games, learning a best response, learning safe opponent exploitation, and online play against an unknown opponent/environment. 
    more » « less
  4. Tree search algorithms, such as branch-and-bound, are the most widely used tools for solving combinatorial and nonconvex problems. For example, they are the foremost method for solving (mixed) integer programs and constraint satisfaction problems. Tree search algorithms recursively partition the search space to find an optimal solution. In order to keep the tree size small, it is crucial to carefully decide, when expanding a tree node, which question (typically variable) to branch on at that node in order to partition the remaining space. Numerous partitioning techniques (e.g., variable selection) have been proposed, but there is no theory describing which technique is optimal. We show how to use machine learning to determine an optimal weighting of any set of partitioning procedures for the instance distribution at hand using samples from the distribution. We provide the first sample complexity guarantees for tree search algorithm configuration. These guarantees bound the number of samples sufficient to ensure that the empirical performance of an algorithm over the samples nearly matches its expected performance on the unknown instance distribution. This thorough theoretical investigation naturally gives rise to our learning algorithm. Via experiments, we show that learning an optimal weighting of partitioning procedures can dramatically reduce tree size, and we prove that this reduction can even be exponential. Through theory and experiments, we show that learning to branch is both practical and hugely beneficial. 
    more » « less
  5. We study model-free reinforcement learning (RL) algorithms for infinite-horizon average-reward Markov decision process (MDP), which is more appropriate for applications that involve continuing operations not divided into episodes. In contrast to episodic/discounted MDPs, theoretical understanding of model-free RL algorithms is relatively inadequate for the average-reward setting. In this paper, we consider both the online setting and the setting with access to a simulator. We develop computationally efficient model-free algorithms that achieve sharper guarantees on regret/sample complexity compared with existing results. In the online setting, we design an algorithm, UCB-AVG, based on an optimistic variant of variance-reduced Q-learning. We show that UCB-AVG achieves a regret bound $\widetilde{O}(S^5A^2sp(h^*)\sqrt{T})$ after $T$ steps, where $S\times A$ is the size of state-action space, and $sp(h^*)$ the span of the optimal bias function. Our result provides the first computationally efficient model-free algorithm that achieves the optimal dependence in $T$ (up to log factors) for weakly communicating MDPs, which is necessary for low regret. In contrast, prior results either are suboptimal in $T$ or require strong assumptions of ergodicity or uniformly mixing of MDPs. In the simulator setting, we adapt the idea of UCB-AVG to develop a model-free algorithm that finds an $\epsilon$-optimal policy with sample complexity $\widetilde{O}(SAsp^2(h^*)\epsilon^{-2} + S^2Asp(h^*)\epsilon^{-1}).$ This sample complexity is near-optimal for weakly communicating MDPs, in view of the minimax lower bound $\Omega(SAsp(^*)\epsilon^{-2})$. Existing work mainly focuses on ergodic MDPs and the results typically depend on $t_{mix},$ the worst-case mixing time induced by a policy. We remark that the diameter $D$ and mixing time $t_{mix}$ are both lower bounded by $sp(h^*)$, and $t_{mix}$ can be arbitrarily large for certain MDPs. On the technical side, our approach integrates two key ideas: learning an $\gamma$-discounted MDP as an approximation, and leveraging reference-advantage decomposition for variance in optimistic Q-learning. As recognized in prior work, a naive approximation by discounted MDPs results in suboptimal guarantees. A distinguishing feature of our method is maintaining estimates of value-difference between state pairs to provide a sharper bound on the variance of reference advantage. We also crucially use a careful choice of the discounted factor $\gamma$ to balance approximation error due to discounting and the statistical learning error, and we are able to maintain a good-quality reference value function with $O(SA)$ space complexity. 
    more » « less