skip to main content


Title: Popular decision tree algorithms are provably noise tolerant
Using the framework of boosting, we prove that all impurity-based decision tree learning algorithms, including the classic ID3, C4.5, and CART, are highly noise tolerant. Our guarantees hold under the strongest noise model of nasty noise, and we provide near-matching upper and lower bounds on the allowable noise rate. We further show that these algorithms, which are simple and have long been central to everyday machine learning, enjoy provable guarantees in the noisy setting that are unmatched by existing algorithms in the theoretical literature on decision tree learning. Taken together, our results add to an ongoing line of research that seeks to place the empirical success of these practical decision tree algorithms on firm theoretical footing.  more » « less
Award ID(s):
2006664
PAR ID:
10339736
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Machine Learning (ICML 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A fundamental task in active learning involves performing a sequence of tests to identify an unknown hypothesis that is drawn from a known distribution. This problem, known as optimal decision tree induction, has been widely studied for decades and the asymptotically best-possible approximation algorithm has been devised for it. We study a generalization where certain test outcomes are noisy, even in the more general case when the noise is persistent, i.e., repeating the test on the scenario gives the same noisy output, disallowing simple repetition as a way to gain confidence. We design new approximation algorithms for both the non-adaptive setting, where the test sequence must be fixed a-priori, and the adaptive setting where the test sequence depends on the outcomes of prior tests. Previous work in the area assumed at most a constant number of noisy outcomes per test and per scenario and provided approximation ratios that were problem dependent (such as the minimum probability of a hypothesis). Our new approximation algorithms provide guarantees that are nearly best-possible and work for the general case of a large number of noisy outcomes per test or per hypothesis where the performance degrades smoothly with this number. Our results adapt and generalize methods used for submodular ranking and stochastic set cover. We evaluate the performance of our algorithms on two natural applications with noise: toxic chemical identification and active learning of linear classifiers. Despite our logarithmic theoretical approximation guarantees, our methods give solutions with cost very close to the information theoretic minimum, demonstrating the effectiveness of our methods. 
    more » « less
  2. We consider the problem of explaining the predictions of an arbitrary blackbox model f: given query access to f and an instance x, output a small set of x's features that in conjunction essentially determines f(x). We design an efficient algorithm with provable guarantees on the succinctness and precision of the explanations that it returns. Prior algorithms were either efficient but lacked such guarantees, or achieved such guarantees but were inefficient. We obtain our algorithm via a connection to the problem of {\sl implicitly} learning decision trees. The implicit nature of this learning task allows for efficient algorithms even when the complexity of~f necessitates an intractably large surrogate decision tree. We solve the implicit learning problem by bringing together techniques from learning theory, local computation algorithms, and complexity theory. Our approach of “explaining by implicit learning” shares elements of two previously disparate methods for post-hoc explanations, global and local explanations, and we make the case that it enjoys advantages of both. 
    more » « less
  3. Tree search algorithms, such as branch-and-bound, are the most widely used tools for solving combinatorial and nonconvex problems. For example, they are the foremost method for solving (mixed) integer programs and constraint satisfaction problems. Tree search algorithms recursively partition the search space to find an optimal solution. In order to keep the tree size small, it is crucial to carefully decide, when expanding a tree node, which question (typically variable) to branch on at that node in order to partition the remaining space. Numerous partitioning techniques (e.g., variable selection) have been proposed, but there is no theory describing which technique is optimal. We show how to use machine learning to determine an optimal weighting of any set of partitioning procedures for the instance distribution at hand using samples from the distribution. We provide the first sample complexity guarantees for tree search algorithm configuration. These guarantees bound the number of samples sufficient to ensure that the empirical performance of an algorithm over the samples nearly matches its expected performance on the unknown instance distribution. This thorough theoretical investigation naturally gives rise to our learning algorithm. Via experiments, we show that learning an optimal weighting of partitioning procedures can dramatically reduce tree size, and we prove that this reduction can even be exponential. Through theory and experiments, we show that learning to branch is both practical and hugely beneficial. 
    more » « less
  4. Telikepalli Kavitha ; Kurt Mehlhorn (Ed.)
    Over the last 50 years, there have been many data structures proposed to perform proximity search problems on metric data. Perhaps the simplest of these is the ball tree, which was independently discovered multiple times over the years. However, there is a lack of strong theoretical guarantees for standard ball trees, often leading to more complicated structures when guarantees are required. In this paper, we present the greedy tree, a simple ball tree construction for which we can prove strong theoretical guarantees for proximity search queries, matching the state of the art under reasonable assumptions. To our knowledge, this is the first ball tree construction providing such guarantees. Like a standard ball tree, it is a binary tree with the points stored in the leaves. Only a point, a radius, and an integer are stored for each node. The asymptotic running times of search algorithms in the greedy tree match those of more complicated structures regularly used in practice. 
    more » « less
  5. An important long-term goal in machine learning systems is to build learning agents that, like humans, can learn many tasks over their lifetime, and moreover use information from these tasks to improve their ability to do so efficiently. In this work, our goal is to provide new theoretical insights into the potential of this paradigm. In particular, we propose a lifelong learning framework that adheres to a novel notion of resource efficiency that is critical in many real-world domains where feature evaluations are costly. That is, our learner aims to reuse information from previously learned related tasks to learn future tasks in a feature-efficient manner. Furthermore, we consider novel combinatorial ways in which learning tasks can relate. Specifically, we design lifelong learning algorithms for two structurally different and widely used families of target functions: decision trees/lists and monomials/polynomials. We also provide strong feature-efficiency guarantees for these algorithms; in fact, we show that in order to learn future targets, we need only slightly more feature evaluations per training example than what is needed to predict on an arbitrary example using those targets. We also provide algorithms with guarantees in an agnostic model where not all the targets are related to each other. Finally, we also provide lower bounds on the performance of a lifelong learner in these models, which are in fact tight under some conditions. 
    more » « less