In Fall of 2024, central Florida was impacted by Hurricane Helene (landfall in Perry, FL as a Cat 4 hurricane on Sept 27) and by Hurricane Milton (landfall in Siesta Key, FL as Cat 3 on Oct 9). The hurricanes led to damages of an estimated value > $200billion. The Nearshore Extreme Events Reconnaissance Association (NEER) and the Geotechnical Extreme Events Reconnaissance Association (GEER) represented by their members from more than 10 academic institutions, federal agencies, and industry and supported by technical staff from the NHERI RAPID facility and the UF Center for Coastal Solutions initiated on Sept 23 a data collection effort that included pre-, during-, and post-storm multi-disciplinary data collections efforts. The field data collection effort was concluded on Nov 22. Data includes hydraulic information on storm surge, waves, and currents, topographic and bathymetric data sets, terrestrial and seabed mapping, and geotechnical site characterization including in-situ testing, sediment sampling, and seismic testing. Data was collected in four focus areas in Florida (Cedar Key; Horseshoe Beach; Midnight Pass and Milton Pass, both near Venice) and observational data and limited data products were collected in other areas in Florida including Orchid, Ponte Vedra, Suwannee, Panama City, and others. Data is organized by site (four primary sites and others); data collection phase with respect to the two hurricanes; and instruments or data collection method. This work included support from both the UF Center for Coastal Solutions and the NHERI RAPID facility.
more »
« less
Geotechnical Measurements for the Investigation and Assessment of Arctic Coastal Erosion—A Review and Outlook
Geotechnical data are increasingly utilized to aid investigations of coastal erosion and the development of coastal morphological models; however, measurement techniques are still challenged by environmental conditions and accessibility in coastal areas, and particularly, by nearshore conditions. These challenges are exacerbated for Arctic coastal environments. This article reviews existing and emerging data collection methods in the context of geotechnical investigations of Arctic coastal erosion and nearshore change. Specifically, the use of cone penetration testing (CPT), which can provide key data for the mapping of soil and ice layers as well as for the assessment of slope and block failures, and the use of free-fall penetrometers (FFPs) for rapid mapping of seabed surface conditions, are discussed. Because of limitations in the spatial coverage and number of available in situ point measurements by penetrometers, data fusion with geophysical and remotely sensed data is considered. Offshore and nearshore, the combination of acoustic surveying with geotechnical testing can optimize large-scale seabed characterization, while onshore most recent developments in satellite-based and unmanned-aerial-vehicle-based data collection offer new opportunities to enhance spatial coverage and collect information on bathymetry and topography, amongst others. Emphasis is given to easily deployable and rugged techniques and strategies that can offer near-term opportunities to fill current gaps in data availability. This review suggests that data fusion of geotechnical in situ testing, using CPT to provide soil information at deeper depths and even in the presence of ice and using FFPs to offer rapid and large-coverage geotechnical testing of surface sediments (i.e., in the upper tens of centimeters to meters of sediment depth), combined with acoustic seabed surveying and emerging remote sensing tools, has the potential to provide essential data to improve the prediction of Arctic coastal erosion, particularly where climate-driven changes in soil conditions may bias the use of historic observations of erosion for future prediction.
more »
« less
- PAR ID:
- 10339781
- Date Published:
- Journal Name:
- Journal of Marine Science and Engineering
- Volume:
- 10
- Issue:
- 7
- ISSN:
- 2077-1312
- Page Range / eLocation ID:
- 914
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submergence by warm and saline waters increases the rate of inundated permafrost thaw compared to sub-aerial thawing on land. Studying the contact between the unfrozen and frozen sediments below the seabed, also known as the ice-bearing permafrost table (IBPT), provides valuable information to understand the evolution of sub-aquatic permafrost, which is key to improving and understanding coastal erosion prediction models and potential greenhouse gas emissions. In this study, we use data from 2D electrical resistivity tomography (ERT) collected in the nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g., seawater depth and resistivity) to image and study the subsea permafrost. The inversion of 2D ERT data sets is commonly performed using deterministic approaches that favor smoothed solutions, which are typically interpreted using a user-specified resistivity threshold to identify the IBPT position. In contrast, to target the IBPT position directly during inversion, we use a layer-based model parameterization and a global optimization approach to invert our ERT data. This approach results in ensembles of layered 2D model solutions, which we use to identify the IBPT and estimate the resistivity of the unfrozen and frozen sediments, including estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and perform sensitivity analyses to study, in a simpler way, the correlations and influences of our model parameters. The set of methods provided in this study may help to further exploit ERT data collected in such permafrost environments as well as for the design of future field experiments.more » « less
-
Rathje, E.; Montoya, B.; Wayne, M. (Ed.)The Los Angeles (LA) Metro Purple Line (D-Line) Extension project requires the design and construction of deep station excavations and tunnels for rail transit from downtown to west LA. The tunnel alignment for Reach 2 of the Westside Purple Line Extension 1 construction transects naturally-occurring tar-infused soils, which have been known to cause challenging construction conditions in southern California, as well as many other locations around the world. Two stations in similar geology but located within and outside tar soils were compared. The soil investigations of the tunnels and station excavations consisted of subsurface exploration including deep soil borings, Cone Penetration Testing (CPT), seismic velocity measurements, pressuremeter testing, and gas measurements, among others. The results of CPT and shear-wave velocity testing provide extensive data in tar soils unique to Southern California and an opportunity to increase our understanding of four-phase soil materials and the effects of tar on soil behavior interpretation and engineering properties. CPT correlations for conventional (non-tar-infused) soils were found to be inadequate for tar soils in the Los Angeles basin. The CPT based Soil Behavior Type Index (SBTn) determined in tar soils suggested the presence of much finer-grained material than determined from laboratory testing and field observations. Additionally, the presence of tar soils amplified the difference between CPT correlations for shear wave velocity (Vs) and direct Vs seismic CPT measurements.more » « less
-
This study uses a data-driven approach to address the complexities associated with research focused multi-sleeve Cone Penetration Test (CPT) devices, particularly focusing on the multi-friction attachment (MFA) and multi-piezo-friction attachment (MPFA) CPT devices. Hindered by time-consuming assembly and susceptibility to sensor stream losses due to extensive electronic components, these advanced devices demand optimization to transform from research devices to practice-suitable devices. This study aims at optimizing the design of the multi-sleeve CPT devices using machine learning, with soil type classification performance as the primary metric for device configuration effectiveness. The research scope centers not on using machine learning for soil classification but on refining the design of multi-sleeve CPT devices. A two-phase data-driven approach is adopted, testing various feature combinations across eight machine learning models. The first phase involves identifying the most suitable model for the dataset, followed by a refinement of features to balance sensor number minimization and soil classification accuracy. The result is a proposed configuration for a multi-sleeve CPT device, simplifying the original design while maintaining robustness, thereby enhancing cost-efficiency and operational effectiveness in geotechnical practice. This work sheds light on how the integration of machine learning can guide the design optimization of geotechnical instruments.more » « less
-
Cone penetrometers (CPTs) are commonly used for characterising the soil properties of centrifuge models; CPT data is useful for interpretation and quality control. This paper describes the development and design of a new robust CPT device for centrifuge testing. The new device consists of a 6mm cone, an outer sleeve, and an inner rod that transmits cone tip forces to a load cell above the ground surface. The design eliminates the need for a custom submerged strain gauge bridge near the tip, significantly reducing cost.A direct comparison was performed between this CPT device and another similar device developed at the University of Cambridge. CPT’s were manufactured using the new design and then shipped to eight different centrifuge facilities, for quality control of similar experiments performed for LEAP (Liquefaction Experiments and Analysis Projects). All the centrifuge tests simulated a 4 m deep deposit of soil, all consisting of Ottawa F-65 sand with relative densities ranging between about 45 to 80%. The results obtained have been extremely valuable as an independent assessment of the density calculated from mass and volume measurements at different laboratories.more » « less
An official website of the United States government

