Abstract We first provide a stochastic formula for the Carathéodory distance in terms of general Markovian couplings and prove a comparison result between the Carathéodory distance and the complete Kähler metric with a negative lower curvature bound using the Kendall–Cranston coupling. This probabilistic approach gives a version of the Schwarz lemma on complete noncompact Kähler manifolds with a further decomposition Ricci curvature into the orthogonal Ricci curvature and the holomorphic sectional curvature, which cannot be obtained by using Yau–Royden's Schwarz lemma. We also prove coupling estimates on quaternionic Kähler manifolds. As a by‐product, we obtain an improved gradient estimate of positive harmonic functions on Kähler manifolds and quaternionic Kähler manifolds under lower curvature bounds.
more »
« less
Multiple Borel–Cantelli Lemma in dynamics and MultiLog Law for recurrence
A classical Borel–Cantelli Lemma gives conditions for deciding whether an infinite number of rare events will happen almost surely. In this article, we propose an extension of Borel–Cantelli Lemma to characterize the multiple occurrence of events on the same time scale. Our results imply multiple Logarithm Laws for recurrence and hitting times, as well as Poisson Limit Laws for systems which are exponentially mixing of all orders. The applications include geodesic flows on compact negatively curved manifolds, geodesic excursions on finite volume hyperbolic manifolds, Diophantine approximations and extreme value theory for dynamical systems.
more »
« less
- PAR ID:
- 10340227
- Date Published:
- Journal Name:
- Journal of Modern Dynamics
- Volume:
- 18
- Issue:
- 0
- ISSN:
- 1930-5311
- Page Range / eLocation ID:
- 209
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mulzer, Wolfgang; Phillips, Jeff M (Ed.)Finding a totally geodesic surface, an embedded surface where the geodesics in the surface are also geodesics in the surrounding manifold, has been a problem of interest in the study of 3-manifolds. This has especially been of interest in hyperbolic 3-manifolds and knot complements, complements of piecewise-linearly embedded circles in the 3-sphere. This is due to Menasco-Reid’s conjecture stating that hyperbolic knot complements do not contain such surfaces. Here, we present an algorithm that determines whether a given surface is totally geodesic and an algorithm that checks whether a given 3-manifold contains a totally geodesic surface. We applied our algorithm on over 150,000 3-manifolds and discovered nine 3-manifolds with totally geodesic surfaces. Additionally, we verified Menasco-Reid’s conjecture for knots up to 12 crossings.more » « less
-
The shape and orientation of data clouds reflect variability in observations that can confound pattern recognition systems. Subspace methods, utilizing Grassmann manifolds, have been a great aid in dealing with such variability. However, this usefulness begins to falter when the data cloud contains sufficiently many outliers corresponding to stray elements from another class or when the number of data points is larger than the number of features. We illustrate how nested subspace methods, utilizing flag manifolds, can help to deal with such additional confounding factors. Flag manifolds, which are parameter spaces for nested sequences of subspaces, are a natural geometric generalization of Grassmann manifolds. We utilize and extend known algorithms for determining the minimal length geodesic, the initial direction generating the minimal length geodesic, and the distance between any pair of points on a flag manifold. The approach is illustrated in the context of (hyper) spectral imagery showing the impact of ambient dimension, sample dimension, and flag structure.more » « less
-
Let \begin{document}$$ \mathscr{M} $$\end{document} be a geometrically finite hyperbolic manifold. We present a very general theorem on the shrinking target problem for the geodesic flow, using its exponential mixing. This includes a strengthening of Sullivan's logarithm law for the excursion rate of the geodesic flow. More generally, we prove logarithm laws for the first hitting time for shrinking cusp neighborhoods, shrinking tubular neighborhoods of a closed geodesic, and shrinking metric balls, as well as give quantitative estimates for the time a generic geodesic spends in such shrinking targets.more » « less
-
Abstract Let M be a geometrically finite acylindrical hyperbolic $$3$$ -manifold and let $M^*$ denote the interior of the convex core of M . We show that any geodesic plane in $M^*$ is either closed or dense, and that there are only countably many closed geodesic planes in $M^*$ . These results were obtained by McMullen, Mohammadi and Oh [Geodesic planes in hyperbolic 3-manifolds. Invent. Math. 209 (2017), 425–461; Geodesic planes in the convex core of an acylindrical 3-manifold. Duke Math. J. , to appear, Preprint , 2018, arXiv:1802.03853] when M is convex cocompact. As a corollary, we obtain that when M covers an arithmetic hyperbolic $$3$$ -manifold $$M_0$$ , the topological behavior of a geodesic plane in $M^*$ is governed by that of the corresponding plane in $$M_0$$ . We construct a counterexample of this phenomenon when $$M_0$$ is non-arithmetic.more » « less
An official website of the United States government

