skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Memory-Hard Puzzles in the Standard Model with Applications to Memory-Hard Functions and Resource-Bounded Locally Decodable Codes
We formally introduce, define, and construct {\em memory-hard puzzles}. Intuitively, for a difficulty parameter $$t$$, a cryptographic puzzle is memory-hard if any parallel random access machine (PRAM) algorithm with ``small'' cumulative memory complexity ($$\ll t^2$$) cannot solve the puzzle; moreover, such puzzles should be both ``easy'' to generate and be solvable by a sequential RAM algorithm running in time $$t$$. Our definitions and constructions of memory-hard puzzles are in the standard model, assuming the existence of indistinguishability obfuscation (\iO) and one-way functions (OWFs), and additionally assuming the existence of a {\em memory-hard language}. Intuitively, a language is memory-hard if it is undecidable by any PRAM algorithm with ``small'' cumulative memory complexity, while a sequential RAM algorithm running in time $$t$$ can decide the language. Our definitions and constructions of memory-hard objects are the first such definitions and constructions in the standard model without relying on idealized assumptions (such as random oracles). We give two applications which highlight the utility of memory-hard puzzles. For our first application, we give a construction of a (one-time) {\em memory-hard function} (MHF) in the standard model, using memory-hard puzzles and additionally assuming \iO and OWFs. For our second application, we show any cryptographic puzzle (\eg, memory-hard, time-lock) can be used to construct {\em resource-bounded locally decodable codes} (LDCs) in the standard model, answering an open question of Blocki, Kulkarni, and Zhou (ITC 2020). Resource-bounded LDCs achieve better rate and locality than their classical counterparts under the assumption that the adversarial channel is resource bounded (e.g., a low-depth circuit). Prior constructions of MHFs and resource-bounded LDCs required idealized primitives like random oracles.  more » « less
Award ID(s):
2047272 1910659 1755708
PAR ID:
10340397
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Security and Cryptography for Networks
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yael Tauman Kalai and Adam D. Smith and Daniel Wichs (Ed.)
    Constructions of locally decodable codes (LDCs) have one of two undesirable properties: low rate or high locality (polynomial in the length of the message). In settings where the encoder/decoder have already exchanged cryptographic keys and the channel is a probabilistic polynomial time (PPT) algorithm, it is possible to circumvent these barriers and design LDCs with constant rate and small locality. However, the assumption that the encoder/decoder have exchanged cryptographic keys is often prohibitive. We thus consider the problem of designing explicit and efficient LDCs in settings where the channel is slightly more constrained than the encoder/decoder with respect to some resource e.g., space or (sequential) time. Given an explicit function f that the channel cannot compute, we show how the encoder can transmit a random secret key to the local decoder using f(⋅) and a random oracle 𝖧(⋅). We then bootstrap the private key LDC construction of Ostrovsky, Pandey and Sahai (ICALP, 2007), thereby answering an open question posed by Guruswami and Smith (FOCS 2010) of whether such bootstrapping techniques are applicable to LDCs in channel models weaker than just PPT algorithms. Specifically, in the random oracle model we show how to construct explicit constant rate LDCs with locality of polylog in the security parameter against various resource constrained channels. 
    more » « less
  2. Error-correcting codes that admit {\em local} decoding and correcting algorithms have been the focus of much recent research due to their numerous theoretical and practical applications. An important goal is to obtain the best possible tradeoffs between the number of queries the algorithm makes to its oracle (the {\em locality} of the task), and the amount of redundancy in the encoding (the {\em information rate}). In Hamming's classical adversarial channel model, the current tradeoffs are dramatic, allowing either small locality, but superpolynomial blocklength, or small blocklength, but high locality. However, in the computationally bounded, adversarial channel model, proposed by Lipton (STACS 1994), constructions of locally decodable codes suddenly exhibit small locality and small blocklength, but these constructions require strong trusted setup assumptions e.g., Ostrovsky, Pandey and Sahai (ICALP 2007) construct private locally decodable codes in the setting where the sender and receiver already share a symmetric key. We study variants of locally decodable and locally correctable codes in computationally bounded, adversarial channels, in a setting with no public-key or private-key cryptographic setup. The only setup assumption we require is the selection of the {\em public} parameters (seed) for a collision-resistant hash function. Specifically, we provide constructions of {\em relaxed locally correctable} and {\em relaxed locally decodable codes} over the binary alphabet, with constant information rate, and poly-logarithmic locality. Our constructions, which compare favorably with their classical analogues in the computationally unbounded Hamming channel, crucially employ {\em collision-resistant hash functions} and {\em local expander graphs}, extending ideas from recent cryptographic constructions of memory-hard functions. 
    more » « less
  3. null (Ed.)
    Memory hard functions (MHFs) are an important cryptographic primitive that are used to design egalitarian proofs of work and in the construction of moderately expensive key-derivation functions resistant to brute-force attacks. Broadly speaking, MHFs can be divided into two categories: data-dependent memory hard functions (dMHFs) and data-independent memory hard functions (iMHFs). iMHFs are resistant to certain side-channel attacks as the memory access pattern induced by the honest evaluation algorithm is independent of the potentially sensitive input e.g., password. While dMHFs are potentially vulnerable to side-channel attacks (the induced memory access pattern might leak useful information to a brute-force attacker), they can achieve higher cumulative memory complexity (CMC) in comparison than an iMHF. In particular, any iMHF that can be evaluated in N steps on a sequential machine has CMC at most 𝒪((N^2 log log N)/log N). By contrast, the dMHF scrypt achieves maximal CMC Ω(N^2) - though the CMC of scrypt would be reduced to just 𝒪(N) after a side-channel attack. In this paper, we introduce the notion of computationally data-independent memory hard functions (ciMHFs). Intuitively, we require that memory access pattern induced by the (randomized) ciMHF evaluation algorithm appears to be independent from the standpoint of a computationally bounded eavesdropping attacker - even if the attacker selects the initial input. We then ask whether it is possible to circumvent known upper bound for iMHFs and build a ciMHF with CMC Ω(N^2). Surprisingly, we answer the question in the affirmative when the ciMHF evaluation algorithm is executed on a two-tiered memory architecture (RAM/Cache). We introduce the notion of a k-restricted dynamic graph to quantify the continuum between unrestricted dMHFs (k=n) and iMHFs (k=1). For any ε > 0 we show how to construct a k-restricted dynamic graph with k=Ω(N^(1-ε)) that provably achieves maximum cumulative pebbling cost Ω(N^2). We can use k-restricted dynamic graphs to build a ciMHF provided that cache is large enough to hold k hash outputs and the dynamic graph satisfies a certain property that we call "amenable to shuffling". In particular, we prove that the induced memory access pattern is indistinguishable to a polynomial time attacker who can monitor the locations of read/write requests to RAM, but not cache. We also show that when k=o(N^(1/log log N)) , then any k-restricted graph with constant indegree has cumulative pebbling cost o(N^2). Our results almost completely characterize the spectrum of k-restricted dynamic graphs. 
    more » « less
  4. Dodis, Y. (Ed.)
    Memory-hard functions (MHFs) are a useful cryptographic primitive which can be used to design egalitarian proof of work puzzles and to protect low entropy secrets like passwords against brute-force attackers. Intuitively, a memory-hard function is a function whose evaluation costs are dominated by memory costs even if the attacker uses specialized hardware (FPGAs/ASICs), and several cost metrics have been proposed to quantify this intuition. For example, space-time cost looks at the product of running time and the maximum space usage over the entire execution of an algorithm. Alwen and Serbinenko (STOC 2015) observed that the space-time cost of evaluating a function multiple times may not scale linearly in the number of instances being evaluated and introduced the stricter requirement that a memory-hard function has high cumulative memory complexity (CMC) to ensure that an attacker’s amortized space-time costs remain large even if the attacker evaluates the function on multiple different inputs in parallel. Alwen et al. (EUROCRYPT 2018) observed that the notion of CMC still gives the attacker undesirable flexibility in selecting space-time tradeoffs e.g., while the MHF Scrypt has maximal CMC Ω(N^2), an attacker could evaluate the function with constant O(1) memory in time O(N^2). Alwen et al. introduced an even stricter notion of Sustained Space complexity and designed an MHF which has s=Ω(N/logN) sustained complexity t=Ω(N) i.e., any algorithm evaluating the function in the parallel random oracle model must have at least t=Ω(N) steps where the memory usage is at least Ω(N/logN). In this work, we use dynamic pebbling games and dynamic graphs to explore tradeoffs between sustained space complexity and cumulative memory complexity for data-dependent memory-hard functions such as Argon2id and Scrypt. We design our own dynamic graph (dMHF) with the property that any dynamic pebbling strategy either (1) has Ω(N) rounds with Ω(N) space, or (2) has CMC Ω(N^{3−ϵ})—substantially larger than N^2. For Argon2id we show that any dynamic pebbling strategy either(1) has Ω(N) rounds with Ω(N^{1−ϵ}) space, or (2) has CMC ω(N^2). We also present a dynamic version of DRSample (Alwen et al. 2017) for which any dynamic pebbling strategy either (1) has Ω(N) rounds with Ω(N/log N) space, or (2) has CMC Ω(N^3/log N). 
    more » « less
  5. null (Ed.)
    We review a study of average-case complexity through the lens of interactive puzzles- interactive games between a computationally bounded Challenger and computationally-bounded Solver/Attacker. Most notably, we use this treatment to review a recent result showing that if NP is hard-on-the-average, then there exists a sampleable distribution over only true statements of an NP language, for which no probabilistic polynomial time algorithm can find witnesses. We also discuss connections to the problem of whether average-case hardness in NP implies averagecase hardness in TFNP, or the existence of cryptographic one-way functions. 
    more » « less