skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Regression Discontinuity Design Framework for Controlling Selection Bias in Evaluations of Differential Item Functioning
Differential item functioning (DIF) is often used to examine validity evidence of alternate form test accommodations. Unfortunately, traditional approaches for evaluating DIF are prone to selection bias. This article proposes a novel DIF framework that capitalizes on regression discontinuity design analysis to control for selection bias. A simulation study was performed to compare the new framework with traditional logistic regression, with respect to Type I error and power rates of the uniform DIF test statistics and bias and root mean square error of the corresponding effect size estimators. The new framework better controlled the Type I error rate and demonstrated minimal bias but suffered from low power and lack of precision. Implications for practice are discussed.  more » « less
Award ID(s):
1749275
PAR ID:
10340561
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Educational and Psychological Measurement
ISSN:
0013-1644
Page Range / eLocation ID:
001316442110684
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When measuring academic skills among students whose primary language is not English, standardized assessments are often provided in languages other than English. The degree to which alternate-language test translations yield unbiased, equitable assessment must be evaluated; however, traditional methods of investigating measurement equivalence are susceptible to confounding group differences. The primary purposes of this study were to investigate differential item functioning (DIF) and item bias across Spanish and English forms of an assessment of early mathematics skills. Secondary purposes were to investigate the presence of selection bias and demonstrate a novel approach for investigating DIF that uses a regression discontinuity design framework to control for selection bias. Data were drawn from 1,750 Spanish-speaking Kindergarteners participating in the Early Childhood Longitudinal Study, Kindergarten Class of 1998–1999, who were administered either the Spanish or English version of the mathematics assessment based on their performance on an English language screening measure. Evidence of selection bias—differences between groups in SES, age, approaches to learning, self-control, social interaction, country of birth, childcare, household composition and number in the home, books in the home, and parent involvement—highlighted limitations of a traditional approach for investigating DIF that only controlled for ability. When controlling for selection bias, only 11% of items displayed DIF, and subsequent examination of item content did not suggest item bias. Results provide evidence that the Spanish translation of the ECLS-K mathematics assessment is an equitable and unbiased assessment accommodation for young dual language learners. 
    more » « less
  2. As algorithmic decision making is increasingly deployed in every walk of life, many researchers have raised concerns about fairness-related bias from such algorithms. But there is little research on harnessing psychometric methods to uncover potential discriminatory bias inside decision-making algorithms. The main goal of this article is to propose a new framework for algorithmic fairness based on differential item functioning (DIF), which has been commonly used to measure item fairness in psychometrics. Our fairness notion, which we call differential algorithmic functioning (DAF), is defined based on three pieces of information: a decision variable, a “fair” variable, and a protected variable such as race or gender. Under the DAF framework, an algorithm can exhibit uniform DAF, nonuniform DAF, or neither (i.e., non-DAF). For detecting DAF, we provide modifications of well-established DIF methods: Mantel–Haenszel test, logistic regression, and residual-based DIF. We demonstrate our framework through a real dataset concerning decision-making algorithms for grade retention in K–12 education in the United States. 
    more » « less
  3. Abstract Establishing the invariance property of an instrument (e.g., a questionnaire or test) is a key step for establishing its measurement validity. Measurement invariance is typically assessed by differential item functioning (DIF) analysis, i.e., detecting DIF items whose response distribution depends not only on the latent trait measured by the instrument but also on the group membership. DIF analysis is confounded by the group difference in the latent trait distributions. Many DIF analyses require knowing several anchor items that are DIF-free in order to draw inferences on whether each of the rest is a DIF item, where the anchor items are used to identify the latent trait distributions. When no prior information on anchor items is available, or some anchor items are misspecified, item purification methods and regularized estimation methods can be used. The former iteratively purifies the anchor set by a stepwise model selection procedure, and the latter selects the DIF-free items by a LASSO-type regularization approach. Unfortunately, unlike the methods based on a correctly specified anchor set, these methods are not guaranteed to provide valid statistical inference (e.g., confidence intervals andp-values). In this paper, we propose a new method for DIF analysis under a multiple indicators and multiple causes (MIMIC) model for DIF. This method adopts a minimal$$L_1$$ L 1 norm condition for identifying the latent trait distributions. Without requiring prior knowledge about an anchor set, it can accurately estimate the DIF effects of individual items and further draw valid statistical inferences for quantifying the uncertainty. Specifically, the inference results allow us to control the type-I error for DIF detection, which may not be possible with item purification and regularized estimation methods. We conduct simulation studies to evaluate the performance of the proposed method and compare it with the anchor-set-based likelihood ratio test approach and the LASSO approach. The proposed method is applied to analysing the three personality scales of the Eysenck personality questionnaire-revised (EPQ-R). 
    more » « less
  4. We develop a non-asymptotic framework for hypothesis testing in nonparametric regression where the true regression function belongs to a Sobolev space. Our statistical guarantees are exact in thesense that Type I and II errors are controlled for any finite sample size. Meanwhile, one proposed test is shown to achieve minimax rate optimality in the asymptotic sense. An important consequence of this non-asymptotic theory is a new and practically useful formula for selecting the optimal smoothing parameter in the testing statistic. Extensions of our results to general reproducing kernel Hilbert spaces and non-Gaussian error regression are also discussed. 
    more » « less
  5. In spite of its urgent importance in the era of big data, testing high-dimensional parameters in generalized linear models (GLMs) in the presence of high-dimensional nuisance parameters has been largely under-studied, especially with regard to constructing powerful tests for general (and unknown) alternatives. Most existing tests are powerful only against certain alternatives and may yield incorrect Type I error rates under high-dimensional nuisance parameter situations. In this paper, we propose the adaptive interaction sum of powered score (aiSPU) test in the framework of penalized regression with a non-convex penalty, called truncated Lasso penalty (TLP), which can maintain correct Type I error rates while yielding high statistical power across a wide range of alternatives. To calculate its p-values analytically, we derive its asymptotic null distribution. Via simulations, its superior finite-sample performance is demonstrated over several representative existing methods. In addition, we apply it and other representative tests to an Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set, detecting possible gene-gender interactions for Alzheimer’s disease. We also put R package “aispu” implementing the proposed test on GitHub. 
    more » « less