skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gravitational Waves from a Core-Collapse Supernova: Perspectives with Detectors in the Late 2020s and Early 2030s
We studied the detectability and reconstruction of gravitational waves from core-collapse supernova multidimensional models using simulated data from detectors predicted to operate in the late 2020s and early 2030s. We found that the detection range will improve by a factor of around two with respect to the second-generation gravitational-wave detectors, and the sky localization will significantly improve. We analyzed the reconstruction accuracy for the lower frequency and higher frequency portion of supernova signals with a 250 Hz cutoff. Since the waveform’s peak frequencies are usually at high frequencies, the gravitational-wave signals in this frequency band were reconstructed more accurately.  more » « less
Award ID(s):
2110555 1806885
PAR ID:
10340598
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Galaxies
Volume:
10
Issue:
3
ISSN:
2075-4434
Page Range / eLocation ID:
70
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Based on the prior O1–O2 observing runs, about 30% of the data collected by Advanced LIGO and Virgo in the next observing runs are expected to be single-interferometer data, i.e. they will be collected at times when only one detector in the network is operating in observing mode. Searches for gravitational-wave signals from supernova events do not rely on matched filtering techniques because of the stochastic nature of the signals. If a Galactic supernova occurs during single-interferometer times, separation of its unmodelled gravitational-wave signal from noise will be even more difficult due to lack of coherence between detectors. We present a novel machine learning method to perform single-interferometer supernova searches based on the standard LIGO-Virgo coherent WaveBurst pipeline. We show that the method may be used to discriminate Galactic gravitational-wave supernova signals from noise transients, decrease the false alarm rate of the search, and improve the supernova detection reach of the detectors. 
    more » « less
  2. Abstract We present results of a search for periodic gravitational wave signals with frequencies between 20 and 400 Hz from the neutron star in the supernova remnant G347.3-0.5 using LIGO O2 public data. The search is deployed on the volunteer computing project Einstein@Home, with thousands of participants donating compute cycles to make this endeavour possible. We find no significant signal candidate and set the most constraining upper limits to date on the amplitude of gravitational wave signals from the target, corresponding to deformations below 10 −6 in a large part of the band. At the frequency of best strain sensitivity, near 166 Hz, we set 90% confidence upper limits on the gravitational wave intrinsic amplitude of h 0 90 % ≈ 7.0 × 10 − 26 . Over most of the frequency range our upper limits are a factor of 20 smaller than the indirect age-based upper limit. 
    more » « less
  3. Abstract The quantum uncertainty of laser light limits the sensitivity of gravitational-wave observatories. Over the past 30 years, techniques for squeezing the quantum uncertainty, as well as for enhancing gravitational-wave signals with optical resonators have been invented. Resonators, however, have finite linewidths, and the high signal frequencies that are produced during the highly scientifically interesting ring-down of astrophysical compact-binary mergers still cannot be resolved. Here, we propose a purely optical approach for expanding the detection bandwidth. It uses quantum uncertainty squeezing inside one of the optical resonators, compensating for the finite resonators’ linewidths while keeping the low-frequency sensitivity unchanged. This quantum expander is intended to enhance the sensitivity of future gravitational-wave detectors, and we suggest the use of this new tool in other cavity-enhanced metrological experiments. 
    more » « less
  4. Abstract Ground-based gravitational-wave detectors like Cosmic Explorer (CE) can be tuned to improve their sensitivity at high or low frequencies by tuning the response of the signal extraction cavity. Enhanced sensitivity above 2 kHz enables measurements of the post-merger gravitational-wave spectrum from binary neutron star mergers, which depends critically on the unknown equation of state of hot, ultra-dense matter. Improved sensitivity below 500 Hz favors precision tests of extreme gravity with black hole ringdown signals and improves the detection prospects while facilitating an improved measurement of source properties for compact binary inspirals at cosmological distances. At intermediate frequencies, a more sensitive detector can better measure the tidal properties of neutron stars. We present and characterize the performance of tuned CE configurations that are designed to optimize detections across different astrophysical source populations. These tuning options give CE the flexibility to target a diverse set of science goals with the same detector infrastructure. We find that a 40 km CE detector outperforms a 20 km in all key science goals other than access to post-merger physics. This suggests that CE should include at least one 40 km facility. 
    more » « less
  5. Abstract The extreme sensitivity required for direct observation of gravitational waves by the Advanced LIGO detectors means that environmental noise is increasingly likely to contaminate Advanced LIGO gravitational wave signals if left unaddressed. Consequently, environmental monitoring efforts have been undertaken and novel noise mitigation techniques have been developed which have reduced environmental coupling and made it possible to analyze environmental artifacts with potential to affect the 90 gravitational wave events detected from 2015–2020 by the Advanced LIGO detectors. So far, there is no evidence for environmental contamination in gravitational wave detections. However, automated, rapid ways to monitor and assess the degree of environmental coupling between gravitational wave detectors and their surroundings are needed as the rate of detections continues to increase. We introduce a computational tool,PEMcheck, for quantifying the degree of environmental coupling present in gravitational wave signals using data from the extant collection of environmental monitoring sensors at each detector. We study its performance when applied to 79 gravitational waves detected in LIGO’s third observing run and test its performance in the case of extreme environmental contamination of gravitational wave data. We find thatPEMcheck’s automated analysis identifies only a small number of gravitational waves that merit further study by environmental noise experts due to possible contamination, a substantial improvement over the manual vetting that occurred for every gravitational wave candidate in the first two observing runs. Building on a first attempt at automating environmental coupling assessments used in the third observing run, this tool represents an improvement in accuracy and interpretability of coupling assessments, reducing the time needed to validate gravitational wave candidates. With the validation provided herein;PEMcheckwill play a critical role in event validation during LIGO’s fourth observing run as an integral part of the data quality report produced for each gravitational wave candidate. 
    more » « less