The softmax policy gradient (PG) method, which performs gradient ascent under softmax policy parameterization, is arguably one of the de facto implementations of policy optimization in modern reinforcement learning. For
Fast Global Convergence of Natural Policy Gradient Methods with Entropy Regularization
Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms in contemporary reinforcement learning. This class of methods is often applied in conjunction with entropy regularization—an algorithmic scheme that encourages exploration—and is closely related to soft policy iteration and trust region policy optimization. Despite the empirical success, the theoretical underpinnings for NPG methods remain limited even for the tabular setting. This paper develops nonasymptotic convergence guarantees for entropy-regularized NPG methods under softmax parameterization, focusing on discounted Markov decision processes (MDPs). Assuming access to exact policy evaluation, we demonstrate that the algorithm converges linearly—even quadratically, once it enters a local region around the optimal policy—when computing optimal value functions of the regularized MDP. Moreover, the algorithm is provably stable vis-à-vis inexactness of policy evaluation. Our convergence results accommodate a wide range of learning rates and shed light upon the role of entropy regularization in enabling fast convergence.
- Publication Date:
- NSF-PAR ID:
- 10340929
- Journal Name:
- Operations Research
- ISSN:
- 0030-364X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -discounted infinite-horizon tabular Markov decision processes (MDPs), remarkable progress has recently been achieved towards establishing global convergence of softmax PG methods in finding a near-optimal policy. However, prior results fall short of delineating clear dependencies of convergence rates on salient parameters such as the cardinality of the state space$$\gamma $$ and the effective horizon$${\mathcal {S}}$$ , both of which could be excessively large. In this paper, we deliver a pessimistic message regarding the iteration complexity of softmax PG methods, despite assuming access to exact gradient computation. Specifically, we demonstrate that the softmax PG method with stepsize$$\frac{1}{1-\gamma }$$ can take$$\eta $$ to converge, even in the presence of a benign policy initialization and an initial state distribution amenable to exploration (so that the distribution mismatch coefficient is not exceedingly large). This is accomplished by characterizing the algorithmic dynamics over a carefully-constructed MDP containing only three actions. Our exponential lower bound hints at the necessity of carefully adjusting update rules or enforcing proper regularization inmore »$$\begin{aligned} \frac{1}{\eta } |{\mathcal {S}}|^{2^{\Omega \big (\frac{1}{1-\gamma }\big )}} ~\text {iterations} \end{aligned}$$ -
Integrating regularization methods with standard loss functions such as the least squares, hinge loss, etc., within a regression framework has become a popular choice for researchers to learn predictive models with lower variance and better generalization ability. Regularizers also aid in building interpretable models with high-dimensional data which makes them very appealing. It is observed that each regularizer is uniquely formulated in order to capture data-specific properties such as correlation, structured sparsity and temporal smoothness. The problem of obtaining a consensus among such diverse regularizers while learning a predictive model is extremely important in order to determine the optimal regularizer for the problem. The advantage of such an approach is that it preserves the simplicity of the final model learned by selecting a single candidate model which is not the case with ensemble methods as they use multiple candidate models for prediction. This is called the consensus regularization problem which has not received much attention in the literature due to the inherent difficulty associated with learning and selecting a model from an integrated regularization framework. To solve this problem, in this paper, we propose a method to generate a committee of non-convex regularized linear regression models, and use a consensusmore »
-
Abstract The goal of this study is to develop a new computed tomography (CT) image reconstruction method, aiming at improving the quality of the reconstructed images of existing methods while reducing computational costs. Existing CT reconstruction is modeled by pixel-based piecewise constant approximations of the integral equation that describes the CT projection data acquisition process. Using these approximations imposes a bottleneck model error and results in a discrete system of a large size. We propose to develop a content-adaptive unstructured grid (CAUG) based regularized CT reconstruction method to address these issues. Specifically, we design a CAUG of the image domain to sparsely represent the underlying image, and introduce a CAUG-based piecewise linear approximation of the integral equation by employing a collocation method. We further apply a regularization defined on the CAUG for the resulting ill-posed linear system, which may lead to a sparse linear representation for the underlying solution. The regularized CT reconstruction is formulated as a convex optimization problem, whose objective function consists of a weighted least square norm based fidelity term, a regularization term and a constraint term. Here, the corresponding weighted matrix is derived from the simultaneous algebraic reconstruction technique (SART). We then develop a SART-type preconditioned fixed-pointmore »
-
We explore the use of policy approximations to reduce the computational cost of learning Nash equilibria in zero-sum stochastic games. We propose a new Q-learning type algorithm that uses a sequence of entropy-regularized soft policies to approximate the Nash policy during the Q-function updates. We prove that under certain conditions, by updating the regularized Q-function, the algorithm converges to a Nash equilibrium. We also demonstrate the proposed algorithm’s ability to transfer previous training experiences, enabling the agents to adapt quickly to new environments. We provide a dynamic hyper-parameter scheduling scheme to further expedite convergence. Empirical results applied to a number of stochastic games verify that the proposed algorithm converges to the Nash equilibrium while exhibiting a major speed-up over existing algorithms.
-
Standard stochastic optimization methods are brittle, sensitive to stepsize choice and other algorithmic parameters, and they exhibit instability outside of well-behaved families of objectives. To address these challenges, we investigate models for stochastic optimization and learning problems that exhibit better robustness to problem families and algorithmic parameters. With appropriately accurate models—which we call the aprox family—stochastic methods can be made stable, provably convergent, and asymptotically optimal; even modeling that the objective is nonnegative is sufficient for this stability. We extend these results beyond convexity to weakly convex objectives, which include compositions of convex losses with smooth functions common in modern machine learning. We highlight the importance of robustness and accurate modeling with experimental evaluation of convergence time and algorithm sensitivity.