skip to main content

Search for: All records

Award ID contains: 1901199

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2023
  2. Free, publicly-accessible full text available May 23, 2023
  3. Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms in contemporary reinforcement learning. This class of methods is often applied in conjunction with entropy regularization—an algorithmic scheme that encourages exploration—and is closely related to soft policy iteration and trust region policy optimization. Despite the empirical success, the theoretical underpinnings for NPG methods remain limited even for the tabular setting. This paper develops nonasymptotic convergence guarantees for entropy-regularized NPG methods under softmax parameterization, focusing on discounted Markov decision processes (MDPs). Assuming access to exact policy evaluation, we demonstrate that the algorithm converges linearly—even quadratically, once it enters a local region around the optimal policy—when computing optimal value functions of the regularized MDP. Moreover, the algorithm is provably stable vis-à-vis inexactness of policy evaluation. Our convergence results accommodate a wide range of learning rates and shed light upon the role of entropy regularization in enabling fast convergence.