In this paper, we investigate the integration of integrated sensing and communication (ISAC) and reconfigurable intelligent surfaces (RIS) for providing wide-coverage and ultrareliable communication and high-accuracy sensing functions. In particular, we consider an RIS-assisted ISAC system in which a multi-antenna base station (BS) simultaneously performs multiuser multi-input single-output (MU-MISO) communications and radar sensing with the assistance of an RIS. We focus on both target detection and parameter estimation performance in terms of the signal-to-noise ratio (SNR) and Cramér-Rao bound (CRB), respectively. Two optimization problems are formulated for maximizing the achievable sum-rate of the multi-user communications under an SNR constraint for target detection or a CRB constraint for parameter estimation, the transmit power budget, and the unit-modulus constraint of the RIS reflection coefficients. Efficient algorithms are developed to solve these two complicated non-convex problems. We then extend the proposed joint design algorithms to the scenario with imperfect self-interference cancellation. Extensive simulation results demonstrate the advantages of the proposed joint beamforming and reflection designs compared with other schemes. In addition, it is shown that more RIS reflection elements bring larger performance gains for directof- arrival (DoA) estimation than for target detection.
more »
« less
Joint Beamforming and Reflection Design for RIS-assisted ISAC Systems
In this paper, we investigate the potential of employing reconfigurable intelligent surface (RIS) in integrated sensing and communication (ISAC) systems. In particular, we consider an RIS-assisted ISAC system in which a multi-antenna base station (BS) simultaneously performs multi-user multi-input single-output (MU-MISO) communication and target detection. We aim to jointly design the transmit beamforming and receive filter of the BS, and the reflection coefficients of the RIS to maximize the sum-rate of the communication users, while satisfying a worst-case radar output signal-to-noise ratio (SNR), the transmit power constraint, and the unit modulus property of the reflecting coefficients. An efficient iterative algorithm based on fractional programming (FP), majorization-minimization (MM), and alternative direction method of multipliers (ADMM) is developed to solve the complicated non-convex problem. Simulation results verify the advantage of the proposed RIS-assisted ISAC scheme and the effectiveness of the developed algorithm.
more »
« less
- PAR ID:
- 10430181
- Date Published:
- Journal Name:
- 022 30th European Signal Processing Conference (EUSIPCO)
- Page Range / eLocation ID:
- 997 to 1001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper investigates reconfigurable intelligent surface (RIS)-assisted secure multiuser communication systems in the presence of hardware impairments (HIs) at the RIS and the transceivers. We jointly optimize the beamforming vectors at the base station (BS) and the phase shifts of the reflecting elements at the RIS so as to maximize the weighted minimum approximate ergodic secrecy rate (WMAESR), subject to the transmission power constraints at the BS and unit-modulus constraints at the RIS. To solve the formulated optimization problem, we first decouple it into two tractable subproblems and then use the block coordinate descent (BCD) method to alternately optimize the subproblems. Two different methods are proposed to solve the two obtained subproblems. The first method transforms each subproblem into a second order cone programming (SOCP) problem by invoking the penalty convex–concave procedure (CCP) method and the closed-form fractional programming (FP) criterion, and then directly solves them by using CVX. The second method leverages the minorization-maximization (MM) algorithm. Specifically, we first derive a concave approximation function, which is a lower bound of the original objective function, and then the two subproblems are transformed into two simple surrogate problems that admit closed-form solutions. Simulation results verify the performance gains of the proposed robust transmission methods over existing non-robust designs. In addition, the MM algorithm is shown to have much lower complexity than the SOCP-based algorithm.more » « less
-
This paper investigates reconfigurable intelligent surface (RIS)-aided frequency division duplexing (FDD) communication systems. Since the downlink and uplink signals are simultaneously transmitted in FDD, the phase shifts at the RIS should be designed to support both transmissions. Considering a single-user multiple-input multiple-output system, we formulate a weighted sum-rate maximization problem to jointly maximize the downlink and uplink system performance. To tackle the non-convex optimization problem, we adopt an alternating optimization (AO) algorithm, in which two phase shift optimization techniques are developed to handle the unit-modulus constraints induced by the reflection coefficients at the RIS. The first technique exploits the manifold optimization-based algorithm, while the second uses a lower-complexity AO approach. Numerical results verify that the proposed techniques rapidly converge to local optima and significantly improve the overall system performance compared to existing benchmark schemes.more » « less
-
A novel coding design is proposed to enhance information retrieval in a wireless network of users with partial access to the data, in the sense of observation, measurement, computation, or storage. Information exchange in the network is assisted by a multi-antenna base station (BS), with no direct access to the data. Accordingly, the missing parts of data are exchanged among users through an uplink (UL) step followed by a downlink (DL) step. In this paper, new coding strategies, inspired by coded caching (CC) techniques, are devised to enhance both UL and DL steps. In the UL step, users transmit encoded and properly combined parts of their accessible data to the BS. Then, during the DL step, the BS carries out the required processing on its received signals and forwards a proper combination of the resulting signal terms back to the users, enabling each user to retrieve the desired information. Using the devised coded data retrieval strategy, the data exchange in both UL and DL steps requires the same communication delay, measured by normalized delivery time (NDT). Furthermore, the NDT of the UL/DL step is shown to coincide with the optimal NDT of the original DL multi-input single-output CC scheme, in which the BS is connected to a centralized data library.more » « less
-
A novel coding design is proposed to enhance information retrieval in a wireless network of users with partial access to the data, in the sense of observation, measurement, computation, or storage. Information exchange in the network is assisted by a multi-antenna base station (BS), with no direct access to the data. Accordingly, the missing parts of data are exchanged among users through an uplink (UL) step followed by a downlink (DL) step. In this paper, new coding strategies, inspired by coded caching (CC) techniques, are devised to enhance both UL and DL steps. In the UL step, users transmit encoded and properly combined parts of their accessible data to the BS. Then, during the DL step, the BS carries out the required processing on its received signals and forwards a proper combination of the resulting signal terms back to the users, enabling each user to retrieve the desired information. Using the devised coded data retrieval strategy, the data exchange in both UL and DL steps requires the same communication delay, measured by normalized delivery time (NDT). Furthermore, the NDT of the UL/DL step is shown to coincide with the optimal NDT of the original DL multi-input single-output CC scheme, in which the BS is connected to a centralized data library.more » « less
An official website of the United States government

