This paper investigates reconfigurable intelligent surface (RIS)-assisted secure multiuser communication systems in the presence of hardware impairments (HIs) at the RIS and the transceivers. We jointly optimize the beamforming vectors at the base station (BS) and the phase shifts of the reflecting elements at the RIS so as to maximize the weighted minimum approximate ergodic secrecy rate (WMAESR), subject to the transmission power constraints at the BS and unit-modulus constraints at the RIS. To solve the formulated optimization problem, we first decouple it into two tractable subproblems and then use the block coordinate descent (BCD) method to alternately optimize the subproblems. Two different methods are proposed to solve the two obtained subproblems. The first method transforms each subproblem into a second order cone programming (SOCP) problem by invoking the penalty convex–concave procedure (CCP) method and the closed-form fractional programming (FP) criterion, and then directly solves them by using CVX. The second method leverages the minorization-maximization (MM) algorithm. Specifically, we first derive a concave approximation function, which is a lower bound of the original objective function, and then the two subproblems are transformed into two simple surrogate problems that admit closed-form solutions. Simulation results verify the performance gains of the proposed robust transmission methods over existing non-robust designs. In addition, the MM algorithm is shown to have much lower complexity than the SOCP-based algorithm.
more »
« less
Joint Beamforming and Reflection Design for RIS-assisted ISAC Systems
In this paper, we investigate the potential of employing reconfigurable intelligent surface (RIS) in integrated sensing and communication (ISAC) systems. In particular, we consider an RIS-assisted ISAC system in which a multi-antenna base station (BS) simultaneously performs multi-user multi-input single-output (MU-MISO) communication and target detection. We aim to jointly design the transmit beamforming and receive filter of the BS, and the reflection coefficients of the RIS to maximize the sum-rate of the communication users, while satisfying a worst-case radar output signal-to-noise ratio (SNR), the transmit power constraint, and the unit modulus property of the reflecting coefficients. An efficient iterative algorithm based on fractional programming (FP), majorization-minimization (MM), and alternative direction method of multipliers (ADMM) is developed to solve the complicated non-convex problem. Simulation results verify the advantage of the proposed RIS-assisted ISAC scheme and the effectiveness of the developed algorithm.
more »
« less
- PAR ID:
- 10430181
- Date Published:
- Journal Name:
- 022 30th European Signal Processing Conference (EUSIPCO)
- Page Range / eLocation ID:
- 997 to 1001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A novel coding design is proposed to enhance information retrieval in a wireless network of users with partial access to the data, in the sense of observation, measurement, computation, or storage. Information exchange in the network is assisted by a multi-antenna base station (BS), with no direct access to the data. Accordingly, the missing parts of data are exchanged among users through an uplink (UL) step followed by a downlink (DL) step. In this paper, new coding strategies, inspired by coded caching (CC) techniques, are devised to enhance both UL and DL steps. In the UL step, users transmit encoded and properly combined parts of their accessible data to the BS. Then, during the DL step, the BS carries out the required processing on its received signals and forwards a proper combination of the resulting signal terms back to the users, enabling each user to retrieve the desired information. Using the devised coded data retrieval strategy, the data exchange in both UL and DL steps requires the same communication delay, measured by normalized delivery time (NDT). Furthermore, the NDT of the UL/DL step is shown to coincide with the optimal NDT of the original DL multi-input single-output CC scheme, in which the BS is connected to a centralized data library.more » « less
-
A novel coding design is proposed to enhance information retrieval in a wireless network of users with partial access to the data, in the sense of observation, measurement, computation, or storage. Information exchange in the network is assisted by a multi-antenna base station (BS), with no direct access to the data. Accordingly, the missing parts of data are exchanged among users through an uplink (UL) step followed by a downlink (DL) step. In this paper, new coding strategies, inspired by coded caching (CC) techniques, are devised to enhance both UL and DL steps. In the UL step, users transmit encoded and properly combined parts of their accessible data to the BS. Then, during the DL step, the BS carries out the required processing on its received signals and forwards a proper combination of the resulting signal terms back to the users, enabling each user to retrieve the desired information. Using the devised coded data retrieval strategy, the data exchange in both UL and DL steps requires the same communication delay, measured by normalized delivery time (NDT). Furthermore, the NDT of the UL/DL step is shown to coincide with the optimal NDT of the original DL multi-input single-output CC scheme, in which the BS is connected to a centralized data library.more » « less
-
In this paper, an intelligent reflecting surface (IRS) is leveraged to enhance the physical layer security of an integrated sensing and communication (ISAC) system in which the IRS is deployed to not only assist the downlink communication for multiple users, but also create a virtual line-of-sight (LoS) link for target sensing. In particular, we consider a challenging scenario where the target may be a suspicious eavesdropper that potentially intercepts the communication-user information transmitted by the base station (BS). To ensure the sensing quality while preventing the eavesdropping, dedicated sensing signals are transmitted by the BS. We investigate the joint design of the phase shifts at the IRS and the communication as well as radar beamformers at the BS to maximize the sensing beampattern gain towards the target, subject to the maximum information leakage to the eavesdropping target and the minimum signal-to-interference-plus-noise ratio (SINR) required by users. Based on the availability of perfect channel state information (CSI) of all involved user links and the potential target location of interest at the BS, two scenarios are considered and two different optimization algorithms are proposed. For the ideal scenario where the CSI of the user links and the potential target location are perfectly known at the BS, a penalty-based algorithm is proposed to obtain a high-quality solution. In particular, the beamformers are obtained with a semi-closed-form solution using Lagrange duality and the IRS phase shifts are solved for in closed form by applying the majorization-minimization (MM) method. On the other hand, for the more practical scenario where the CSI is imperfect and the potential target location is uncertain in a region of interest, a robust algorithm based on the $\cal S$ -procedure and sign-definiteness approaches is proposed. Simulation results demonstrate the effectiveness of the proposed scheme in achieving a trade-off between the communication quality and the sensing quality, and also show the tremendous potential of IRS for use in sensing and improving the security of ISAC systems.more » « less
-
In this paper, we consider the physical layer security of an RIS-assisted multiple-antenna communication system with randomly located eavesdroppers. The exact distributions of the received signal-to-noise-ratios (SNRs) at the legitimate user and the eavesdroppers located according to a Poisson point process (PPP) are derived, and a closed-form expression for the secrecy outage probability (SOP) is obtained. It is revealed that the secrecy performance is mainly affected by the number of RIS reflecting elements, and the impact of the transmit antennas and transmit power at the base station is marginal. In addition, when the locations of the randomly located eavesdroppers are unknown, deploying the RIS closer to the legitimate user rather than to the base station is shown to be more efficient. We also perform an analytical study demonstrating that the secrecy diversity order depends on the path loss exponent of the RIS-to-ground links. Finally, numerical simulations are conducted to verify the accuracy of these theoretical observations.more » « less