skip to main content


Title: Cutoff phenomenon and entropic uncertainty for random quantum circuits
Abstract

How fast a state of a system converges to a stationary state is one of the fundamental questions in science. Some Markov chains and random walks on finite groups are known to exhibit the non-asymptotic convergence to a stationary distribution, called the cutoff phenomenon. Here, we examine how quickly a random quantum circuit could transform a quantum state to a Haar-measure random quantum state. We find that random quantum states, as stationary states of random walks on a unitary group, are invariant under the quantum Fourier transform (QFT). Thus the entropic uncertainty of random quantum states has balanced Shannon entropies for the computational basis and the QFT basis. By calculating the Shannon entropy for random quantum states and the Wasserstein distances for the eigenvalues of random quantum circuits, we show that the cutoff phenomenon occurs for the random quantum circuit. It is also demonstrated that the Dyson-Brownian motion for the eigenvalues of a random unitary matrix as a continuous random walk exhibits the cutoff phenomenon. The results here imply that random quantum states could be generated with shallow random circuits.

 
more » « less
NSF-PAR ID:
10452895
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Electronic Structure
Volume:
5
Issue:
3
ISSN:
2516-1075
Page Range / eLocation ID:
Article No. 035004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The complexity of quantum states has become a key quantity of interest across various subfields of physics, from quantum computing to the theory of black holes. The evolution of generic quantum systems can be modelled by considering a collection of qubits subjected to sequences of random unitary gates. Here we investigate how the complexity of these random quantum circuits increases by considering how to construct a unitary operation from Haar-random two-qubit quantum gates. Implementing the unitary operation exactly requires a minimal number of gates—this is the operation’s exact circuit complexity. We prove a conjecture that this complexity grows linearly, before saturating when the number of applied gates reaches a threshold that grows exponentially with the number of qubits. Our proof overcomes difficulties in establishing lower bounds for the exact circuit complexity by combining differential topology and elementary algebraic geometry with an inductive construction of Clifford circuits. 
    more » « less
  2. Abstract

    Variational hybrid quantum-classical algorithms (VHQCAs) are near-term algorithms that leverage classical optimization to minimize a cost function, which is efficiently evaluated on a quantum computer. Recently VHQCAs have been proposed for quantum compiling, where a target unitaryUis compiled into a short-depth gate sequenceV. In this work, we report on a surprising form of noise resilience for these algorithms. Namely, we find one often learns the correct gate sequenceV(i.e. the correct variational parameters) despite various sources of incoherent noise acting during the cost-evaluation circuit. Our main results are rigorous theorems stating that the optimal variational parameters are unaffected by a broad class of noise models, such as measurement noise, gate noise, and Pauli channel noise. Furthermore, our numerical implementations on IBM’s noisy simulator demonstrate resilience when compiling the quantum Fourier transform, Toffoli gate, and W-state preparation. Hence, variational quantum compiling, due to its robustness, could be practically useful for noisy intermediate-scale quantum devices. Finally, we speculate that this noise resilience may be a general phenomenon that applies to other VHQCAs such as the variational quantum eigensolver.

     
    more » « less
  3. Abstract

    We prove that$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$poly(t)·n1/D-depth local random quantum circuits with two qudit nearest-neighbor gates on aD-dimensional lattice withnqudits are approximatet-designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was$${{\,\textrm{poly}\,}}(t)\cdot n$$poly(t)·ndue to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$$D=1$$D=1. We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($${{\,\mathrm{\textsf{PH}}\,}}$$PH) is infinite and that certain counting problems are$$\#{\textsf{P}}$$#P-hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anti-concentration”, meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Our result improves the required depth for this level of anti-concentration from linear depth to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent experiment by the Google Quantum AI group to perform such a sampling task with 53 qubits on a two-dimensional lattice (Arute in Nature 574(7779):505–510, 2019; Boixo et al. in Nate Phys 14(6):595–600, 2018) (and related experiments by USTC), and confirms their conjecture that$$O(\sqrt{n})$$O(n)depth suffices for anti-concentration. The proof is based on a previous construction oft-designs by Brandão et al. (2016), an analysis of how approximate designs behave under composition, and an extension of the quasi-orthogonality of permutation operators developed by Brandão et al. (2016). Different versions of the approximate design condition correspond to different norms, and part of our contribution is to introduce the norm corresponding to anti-concentration and to establish equivalence between these various norms for low-depth circuits. For random circuits with long-range gates, we use different methods to show that anti-concentration happens at circuit size$$O(n\ln ^2 n)$$O(nln2n)corresponding to depth$$O(\ln ^3 n)$$O(ln3n). We also show a lower bound of$$\Omega (n \ln n)$$Ω(nlnn)for the size of such circuit in this case. We also prove that anti-concentration is possible in depth$$O(\ln n \ln \ln n)$$O(lnnlnlnn)(size$$O(n \ln n \ln \ln n)$$O(nlnnlnlnn)) using a different model.

     
    more » « less
  4. Abstract

    The quantum walk formalism is a widely used and highly successful framework for modeling quantum systems, such as simulations of the Dirac equation, different dynamics in both the low and high energy regime, and for developing a wide range of quantum algorithms. Here we present the circuit-based implementation of a discrete-time quantum walk in position space on a five-qubit trapped-ion quantum processor. We encode the space of walker positions in particular multi-qubit states and program the system to operate with different quantum walk parameters, experimentally realizing a Dirac cellular automaton with tunable mass parameter. The quantum walk circuits and position state mapping scale favorably to a larger model and physical systems, allowing the implementation of any algorithm based on discrete-time quantum walks algorithm and the dynamics associated with the discretized version of the Dirac equation.

     
    more » « less
  5. We explore how to build quantum circuits that compute the lowest energy state corresponding to a given Hamiltonian within a symmetry subspace by explicitly encoding it into the circuit. We create an explicit unitary and a variationally trained unitary that maps any vector output by ansatz A(α→) from a defined subspace to a vector in the symmetry space. The parameters are trained varitionally to minimize the energy, thus keeping the output within the labelled symmetry value. The method was tested for a spin XXZ Hamiltonian using rotation and reflection symmetry and H2 Hamiltonian within Sz=0 subspace using S2 symmetry. We have found the variationally trained unitary gives good results with very low depth circuits and can thus be used to prepare symmetry states within near term quantum computers. 
    more » « less