Reinforcement learning-based traffic signal control systems (RLTSC) can enhance dynamic adaptability, save vehicle travelling time and promote intersection capacity. However, the existing RLTSC methods do not consider the driver's response time requirement, so the systems often face efficiency limitations and implementation difficulties. We propose the advance decision-making reinforcement learning traffic signal control (AD-RLTSC) algorithm to improve traffic efficiency while ensuring safety in mixed traffic environment. First, the relationship between the intersection perception range and the signal control period is established and the trust region state (TRS) is proposed. Then, the scalable state matrix is dynamically adjusted to decide the future signal light status. The decision will be displayed to the human-driven vehicles (HDVs) through the bi-countdown timer mechanism and sent to the nearby connected automated vehicles (CAVs) using the wireless network rather than be executed immediately. HDVs and CAVs optimize the driving speed based on the remaining green (or red) time. Besides, the Double Dueling Deep Q-learning Network algorithm is used for reinforcement learning training; a standardized reward is proposed to enhance the performance of intersection control and prioritized experience replay is adopted to improve sample utilization. The experimental results on vehicle micro-behaviour and traffic macro-efficiency showed that the proposed AD-RLTSC algorithm can simultaneously improve both traffic efficiency and traffic flow stability.
Connected autonomous intelligent agents (AIA) can improve intersection performance and resilience for the transportation infrastructure. An agent is an autonomous decision maker whose decision making is determined internally but may be altered by interactions with the environment or with other agents. Implementing agent-based modeling techniques to advance communication for more appropriate decision making can benefit autonomous vehicle technology.
This research examines vehicle to vehicle (V2V), vehicle to infrastructure (V2I), and infrastructure to infrastructure (I2I) communication strategies that use gathered data to ensure these agents make appropriate decisions under operational circumstances. These vehicles and signals are modeled to adapt to the common traffic flow of the intersection to ultimately find an traffic flow that will minimizes average vehicle transit time to improve intersection efficiency. By considering each light and vehicle as an agent and providing for communication between agents, additional decision-making data can be transmitted. Improving agent based I2I communication and decision making will provide performance benefits to traffic flow capacities.
more » « less- Award ID(s):
- 1633608
- PAR ID:
- 10341166
- Date Published:
- Journal Name:
- c. ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
We study the problem of analyzing the effects of inconsistencies in perception, intent prediction, and decision making among interacting agents. When accounting for these effects, planning is akin to synthesizing policies in uncertain and potentially partially-observable environments. We consider the case where each agent, in an effort to avoid a difficult planning problem, does not consider the inconsistencies with other agents when computing its policy. In particular, each agent assumes that other agents compute their policies in the same way as it does, i.e., with the same objective and based on the same system model. While finding policies on the composed system model, which accounts for the agent interactions, scales exponentially, we efficiently provide quantifiable performance metrics in the form of deltas in the probability of satisfying a given specification. We showcase our approach using two realistic autonomous vehicle case-studies and implement it in an autonomous vehicle simulator.more » « less
-
As communication technologies develop, an au- tonomous vehicle will receive information not only from its own sensing system but also from infrastructures and other vehicles through communication. This paper discusses how to exploit a sequence of future information that is shared among autonomous vehicles, including the planned positions, the velocities and the lane numbers. A hybrid system model is constructed, and a control policy is designed to utilize shared sequence information for making navigation decisions. For the high-level discrete state transitions, the shared information is used to determine when to change lane, if lane changing will bring reward for the autonomous vehicle and there exists a feasible continuous state controller. For the low-level continuous state space controller generation, the shared information can relax the safety interval constraints in the existing model predictive control method. In the system level, the information sharing can increase the traffic flow and improve driving comfort. We demonstrate the advantages of information sharing in control and navigation in simulation.more » « less
-
Abstract Rapid advances in vehicle automation and communication technologies enable connected autonomous vehicles (CAVs) to cross intersections cooperatively, which could significantly improve traffic throughput and safety at intersections. Virtual platooning, designed upon car‐following behavior, is one of the promising control methods to promote cooperative intersection crossing of CAVs. Nevertheless, demand variation raises safety and stability concerns when CAVs adopt a virtual platooning control approach. Along this line, this study proposes an adaptive vehicle control method to facilitate the formation of a virtual platoon and the cooperative crossing of CAVs, factoring demand variations at an isolated intersection. This study derives the stability conditions of virtual CAV platoons depending on the time‐varying traffic demand. Based on the derived stability conditions, an optimization model is proposed to adaptively control CAVs dynamics by balancing approaching traffic mobility and safety to enhance the reliability of cooperative crossing at intersections. The simulation results show that, compared to the nonadaptive control, our proposed method can increase the intersection throughput by 18.2%. Also, time‐to‐collision results highlight the advantages of the proposed adaptive control in securing traffic safety.
-
Vehicle-to-pedestrian communication could significantly improve pedestrian safety at signalized intersections. However, it is unlikely that pedestrians will typically be carrying a low latency communication-enabled device with an activated pedestrian safety application in their hand-held device all the time. Because of this, multiple traffic cameras at a signalized intersection could be used to accurately detect and locate pedestrians using deep learning, and broadcast safety alerts related to pedestrians to warn connected and automated vehicles around signalized intersections. However, the unavailability of high-performance roadside computing infrastructure and the limited network bandwidth between traffic cameras and the computing infrastructure limits the ability of real-time data streaming and processing for pedestrian detection. In this paper, we describe an edge computing-based real-time pedestrian detection strategy that combines a pedestrian detection algorithm using deep learning and an efficient data communication approach to reduce bandwidth requirements while maintaining high pedestrian detection accuracy. We utilize a lossy compression technique on traffic camera data to determine the tradeoff between the reduction of the communication bandwidth requirements and a defined pedestrian detection accuracy. The performance of the pedestrian detection strategy is measured in relation to pedestrian classification accuracy with varying peak signal-to-noise ratios. The analyses reveal that we detect pedestrians by maintaining a defined detection accuracy with a peak signal-to-noise ratio 43 dB while reducing the communication bandwidth from 9.82 Mbits/sec to 0.31 Mbits/sec, a 31× reduction.more » « less