skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational Synthesis of Large-Scale Three-dimensional Heterogeneous Lattice Structures
This paper describes a methodology for designing the material distribution and orientation of three-dimensional non-uniform (heterogeneous) lattice structures. Recent advances in additive manufacturing enable fabrication across multiple length scales. Homogenization-based design optimization and the subsequent projection of the optimized design facilitate the synthesis of large-scale microstructures that form lightweight bionic designs. The main aspects of this research are (a) the construction, homogenization-based optimization, and projection of two types of lattices with different degrees of anisotropy and (b) the parallelization of the analysis, optimization, and projection framework in order to handle large-scale meshes and obtain high-resolution, heterogeneous lattice structures. Cubic and octet-truss lattices were selected to demonstrate the ability of the framework to design different types of lattices. A quadcopter arm and an internal wing structure were designed using the optimization and projection framework, verifying its capability to synthesize heterogeneous lattice structures for complex design domains. The ability to change the complexity of optimized microlattices using the characteristic parameters of the lattice is discussed. The relationship between the lattice anisotropy and the optimized, smoothed orientation is investigated, and the optimized design for each lattice is compared with those obtained using conventional design optimization procedures.  more » « less
Award ID(s):
1847133
PAR ID:
10341318
Author(s) / Creator(s):
Editor(s):
J.A. Ekaterinaris
Date Published:
Journal Name:
Aerospace science and technology
Volume:
120
ISSN:
1626-3219
Page Range / eLocation ID:
107258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spinodoid architected materials have drawn significant attention due to their unique nature in stochasticity, aperiodicity, and bi-continuity. Compared to classic periodic truss-, beam-, and plate-based lattice architectures, spinodoids are insensitive to manufacturing defects, scalable for high-throughput production, functionally graded by tunable local properties, and material failure resistant due to low-curvature morphology. However, the design of spinodoids is often hindered by the curse of dimensionality with an extremely large design space of spinodoid types, material density, orientation, continuity, and anisotropy. From a design optimization perspective, while genetic algorithms are often beyond the reach of computing capacity, gradient-based topology optimization is challenged by the intricate mathematical derivation of gradient fields with respect to various spinodoid parameters. To address such challenges, we propose a data-driven multiscale topology optimization framework. Our framework reformulates the design variables of spinodoid materials as the parameters of neural networks, enabling automated computation of topological gradients. Additionally, it incorporates a Gaussian Process surrogate for spinodoid constitutive models, eliminating the need for repeated computational homogenization and enhancing the scalability of multiscale topology optimization. Compared to ‘black-box’ deep learning approaches, the proposed framework provides clear physical insights into material distribution. It explicitly reveals why anisotropic spinodoids with tailored orientations are favored in certain regions, while isotropic spinodoids are more suitable elsewhere. This interpretability helps to bridge the gap between data-driven design with mechanistic understanding. To this end, we test our design framework on several numerical experiments. We find our multiscale spinodoid designs with controllable anisotropy achieve better performance than single-scale isotropic counterparts, with clear physics interpretations. 
    more » « less
  2. PurposeThis paper aims to assess the feasibility of additively manufactured wind tunnel models. The additively manufactured model was used to validate a computational framework allowing the evaluation of the performance of five wing models. Design/methodology/approachAn optimized fighter wing was additively manufactured and tested in a low-speed wind tunnel to obtain the aerodynamic coefficients and deflections at different speeds and angles of attack. The flexible wing model with optimized curvilinear spars and ribs was used to validate a finite element framework that was used to study the aeroelastic performance of five wing models. As a computationally efficient optimization method, homogenization-based topology optimization was used to generate four different lattice internal structures for the wing in this study. The efficiency of the spline-based optimization used for the spar-rib model and the lattice-based optimization used for the other four wings were compared. FindingsThe aerodynamic loads and displacements obtained experimentally and computationally were in good agreement, proving that additive manufacture can be used to create complex accurate models. The study also shows the efficiency of the homogenization-based topology optimization framework in generating designs with superior stiffness. Originality/valueTo the best of the authors’ knowledge, this is the first time a wing model with curvilinear spars and ribs was additively manufactured as a single piece and tested in a wind tunnel. This research also demonstrates the efficiency of homogenization-based topology optimization in generating enhanced models of different complexity. 
    more » « less
  3. Abstract Spinodal architected materials with tunable anisotropy unify optimal design and manufacturing of multiscale structures. By locally varying the spinodal class, orientation, and porosity during topology optimization, a large portion of the anisotropic material space is exploited such that material is efficiently placed along principal stress trajectories at the microscale. Additionally, the bicontinuous, nonperiodic, unstructured, and stochastic nature of spinodal architected materials promotes mechanical and biological functions not explicitly considered during optimization (e.g., insensitivity to imperfections, fluid transport conduits). Furthermore, in contrast to laminated composites or periodic, structured architected materials (e.g., lattices), the functional representation of spinodal architected materials leads to multiscale, optimized designs with clear physical interpretation that can be manufactured directly, without special treatment at spinodal transitions. Physical models of the optimized, spinodal‐embedded parts are manufactured using a scalable, voxel‐based strategy to communicate with a masked stereolithography (m‐SLA) 3D printer. 
    more » « less
  4. Anisotropy in additive manufacturing (AM), particularly in the material extrusion process, plays a crucial role in determining the actual structural performance, including the stiffness and strength of the printed parts. Unless accounted for, anisotropy can compromise the objective performance of topology-optimized structures and allow premature failures for stress-sensitive design domains. This study harnesses process-induced anisotropy in material extrusion-based 3D printing to design and fabricate stiff, strong, and lightweight structures using a two-step framework. First, an AM-oriented anisotropic strength-based topology optimization formulation optimizes the structural geometry and infill orientations, while assuming both anisotropic (i.e., transversely isotropic) and isotropic infill types as candidate material phases. The dissimilar stiffness and strength interpolation schemes in the formulation allow for the optimized allocation of anisotropic and isotropic material phases in the design domain while satisfying their respective Tsai–Wu and von Mises stress constraints. Second, a suitable fabrication methodology realizes anisotropic and isotropic material phases with appropriate infill density, controlled print path (i.e., infill directions), and strong interfaces of dissimilar material phases. Experimental investigations show up to 37% improved stiffness and 100% improved strength per mass for the optimized and fabricated structures. The anisotropic strength-based optimization improves load-carrying capacity by simultaneous infill alignment along the stress paths and topological adaptation in response to high stress concentration. The adopted interface fabrication methodology strengthens comparatively weaker anisotropic joints with minimal additional material usage and multi-axial infill patterns. Furthermore, numerically predicted failure locations agree with experimental observations. The demonstrated framework is general and can potentially be adopted for other additive manufacturing processes that exhibit anisotropy, such as fiber composites. 
    more » « less
  5. Additive manufacturing has provided the ability to manufacture complex structures using a wide variety of materials and geometries. Structures such as triply periodic minimal surface (TPMS) lattices have been incorporated into products across many fields due to their unique combinations of mechanical, geometric, and physical properties. Yet, the near limitless possibility of combining geometry and material into these lattices leaves much to be discovered. This article provides a dataset of experimentally gathered tensile stress-strain curves and measured porosity values for 389 unique gyroid lattice structures manufactured using vat photopolymerization 3D printing. The lattice samples were printed from one of twenty different photopolymer materials available from either Formlabs, LOCTITE AM, or ETEC that range from strong and brittle to elastic and ductile and were printed on commercially available 3D printers, specifically the Formlabs Form2, Prusa SL1, and ETEC Envision One cDLM Mechanical. The stress-strain curves were recorded with an MTS Criterion C43.504 mechanical testing apparatus and following ASTM standards, and the void fraction or “porosity” of each lattice was measured using a calibrated scale. This data serves as a valuable resource for use in the development of novel printing materials and lattice geometries and provides insight into the influence of photopolymer material properties on the printability, geometric accuracy, and mechanical performance of 3D printed lattice structures. The data described in this article was used to train a machine learning model capable of predicting mechanical properties of 3D printed gyroid lattices based on the base mechanical properties of the printing material and porosity of the lattice in the research article [1]. 
    more » « less