Since the mass outbreak of COVID-19 globally, the unique challenges of the pandemic have demanded the global economy, governments, and scientific community adapt in unprecedented ways. Despite pre-existing federal stockpiles of personal protective equipment (PPE) in countries such as the United States, rising shortages and resource constraints have compounded the complexity of curbing the spread of the pandemic and treating patients. To face such shortages, healthcare workers in different parts of the world have been reusing PPE, especially personal protective gloves, and possibly sanitizing them through more cost-effective means such as a simple bleach and water solution. To preserve current and future PPE resources, this study investigates the effect of repeated diluted bleach treatment on mechanical properties of representative gloves to determine if reuse is an acceptable practice. This study aims to determine how bleach sanitization may affect material degradation of gloves when used in working environments. To this end, tensile tests were performed on elastomeric exam gloves with and without bleach sanitization treatments. Control data were prepared for both nonconditioned and humidity conditioned glove samples. Additional glove samples were subjected to ten repetitions of bleach exposure as outlined by Centers for Disease Control and Prevention US (CDC US) guidelines. Subsequently, all glove samples were tensile tested, and mechanical properties were determined. A statistically significant (p ≤ 0.05) loss of stiffness was observed for some of the tested samples, ranging as high as a 90% loss in stiffness. This research could serve to inform medical professionals as to whether sanitization through bleach treatments is acceptable and if so, at how many repetitions this treatment could potentially compromise the glove’s ability to function as intended
more »
« less
Mechanical Performance of Latex and Nitrile Medical Exam Gloves Under Repeated Soap and Water Treatment
The human cost of the COVID-19 pandemic has taken a great toll, and led, around the globe, to a shortage in personal protective equipment (PPE) such as medical exam gloves. To face this shortage and keep themselves and patients safe, many front-line healthcare providers have been overextending the life of PPE. Though not ideal, one pragmatic solution often used is the practice of sanitization and extended use of existing PPE. The data produced by these experiments should help determine an acceptable reusability window of PPE in a working environment, by which the effective use time may be extended and justified. The effect of repeated sanitization, using soap and water, on the mechanical performance was investigated for latex and nitrile elastomeric medical exam gloves. Tensile tests were performed for various manufacturer brands commonly used in the United States (Glovepak Europa, Polymed and Sempersure) and India (Surgiglove). Tensile test samples were prepared for each studied glove and treatment combination. Nitrile gloves were observed to be more uniformly affected by the application of soap and water sanitization than latex gloves. Glovepak Europa nitrile gloves saw significant changes (p≤0.001) in elastic modulus after 5, 10 and 20 treatments losing 31.5%, 42.7% and 49.7%, respectively. Sempersure nitrile gloves also saw significant changes (p≤0.05) in elastic modulus at 5, 10 and 20 treatments losing 44.2%, 34.3% and 45.9%, respectively. Surgiglove nitrile gloves saw a significant loss in elastic modulus of 42.0% (p≤0.001) after 10 treatments. Surgiglove powder free latex showed no significant (p>0.05) change after 10 or 20 repeated treatments using soap and water. Polymed powder free latex showed no significant (p>0.05) change after 10 treatments, but did show a significant (p≤0.05) decrease in elastic modulus by 24.2% after 5 treatments and 25.5% after 20 treatments. Surgiglove powdered latex showed a significant (p≤0.05) increase in elastic modulus by 19.9% after 5 treatments and 15.8% after 10 treatments, while showing no significant (p>0.05) change at 20 treatments. Due to the consistent significant degradation after five repetitions, use of soap and water may not be an adequate sanitization procedure for nitrile gloves, since it would potentially induce premature failure. The latex gloves showed no clear pattern and the results were inconclusive.
more »
« less
- Award ID(s):
- 1928622
- PAR ID:
- 10341605
- Date Published:
- Journal Name:
- American journal of advanced research
- Volume:
- 5
- Issue:
- July
- ISSN:
- 2572-8830
- Page Range / eLocation ID:
- 1-5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Instant data deletion (or sanitization) in NAND flash devices is essential for achieving data privacy, but it remains challenging due to the mismatch between erase and write granularities, which leads to high overhead and accelerated wear. While page-overwrite-based instant data sanitization has proven effective for 2D NAND, its applicability to 3D NAND is limited due to the unique sub-block architecture. In this study, we experimentally evaluate page-overwrite-based sanitization on commercial 3D NAND flash memory chips and uncover significant threshold voltage disturbances in erased cells on adjacent pages within the same layer but across different sub-blocks. Our key findings reveal that page-overwrite sanitization increases the median raw bit error rate (RBER) beyond correction limits (exceeding 0.93%) in Floating-Gate (FG) Single-Level Cell (SLC) technology, whereas Charge-Trap (CT) SLC 3D NAND flash memories exhibit higher robustness. In Triple-Level Cell (TLC) 3D NAND, page-overwrite sanitization proves impractical, with the median RBER of ∼13% for FG and ∼5% for CT devices. To overcome these challenges, we proposePULSE, a low-disturbance sanitization technique that balances sanitization efficiency ({{\eta }_{san}}) and data integrity (RBER). Experimental results show that PULSE eliminates RBER increases in SLC devices and reduces the median RBER to below 0.57% for FG and 0.79% for CT in fresh TLC blocks, demonstrating its practical viability for 3D NAND flash sanitization.more » « less
-
Parkinson’s disease (PD) is a neurological progressive movement disorder, affecting more than 10 million people globally. PD demands a longitudinal assessment of symptoms to monitor the disease progression and manage the treatments. Existing assessment methods require patients with PD (PwPD) to visit a clinic every 3–6 months to perform movement assessments conducted by trained clinicians. However, periodic visits pose barriers as PwPDs have limited mobility, and healthcare cost increases. Hence, there is a strong demand for using telemedicine technologies for assessing PwPDs in remote settings. In this work, we present an in-home telemedicine kit, named iTex (intelligent Textile), which is a patient-centered design to carry out accessible tele-assessments of movement symptoms in people with PD. iTex is composed of a pair of smart textile gloves connected to a customized embedded tablet. iTex gloves are integrated with flex sensors on the fingers and inertial measurement unit (IMU) and have an onboard microcontroller unit with IoT (Internet of Things) capabilities including data storage and wireless communication. The gloves acquire the sensor data wirelessly to monitor various hand movements such as finger tapping, hand opening and closing, and other movement tasks. The gloves are connected to a customized tablet computer acting as an IoT device, configured to host a wireless access point, and host an MQTT broker and a time-series database server. The tablet also employs a patient-centered interface to guide PwPDs through the movement exam protocol. The system was deployed in four PwPDs who used iTex at home independently for a week. They performed the test independently before and after medication intake. Later, we performed data analysis of the in-home study and created a feature set. The study findings reported that the iTex gloves were capable to collect movement-related data and distinguish between pre-medication and post-medication cases in a majority of the participants. The IoT infrastructure demonstrated robust performance in home settings and offered minimum barriers for the assessment exams and the data communication with a remote server. In the post-study survey, all four participants expressed that the system was easy to use and poses a minimum barrier to performing the test independently. The present findings indicate that the iTex glove system has the potential for periodic and objective assessment of PD motor symptoms in remote settings.more » « less
-
Characterization of the interphase region in carbon fiber reinforced polymer (CFRP) is challenging because of the length scale involved. The interpretation of measured load-displacement curves using indentation is affected by the lack of analytical solutions that account for the fiber constraint effect. A combination of AFM (Atomic Force Microscopy) based indentation and FE (Finite Element) simulations showed a gradient in the elastic modulus of the interphase evaluated along a radial line from the fiber. 3D FEA (Finite Element Analysis) indicated that fiber constraint effect is significant in the region less than 40 nm away from the fiber. Nonetheless, the apparent rise in elastic modulus due to fiber constraint is limited when compared to the gradient in the elastic modulus of the interphase. Additionally, this technique is used to demonstrate that UV irradiation causes a rapid decrease in the modulus of the region near the fiber due to photocatalytic degradation of carbon fiber but subsequently increases due to high cross-linking. Whereas, the modulus of the matrix at 8 mm away from the fiber decreased by 32% after 24 h of UV irradiation. This indicates that the response of epoxy to UV irradiation is influenced by the proximity to the reinforcement.more » « less
-
Abstract In this study, we quantified differences in iris stiffness between female and male subjects in healthy and postlaser peripheral iridotomy (post-LPI) groups using an image-based inverse modeling approach. We analyzed anterior segment optical coherence tomography (AS-OCT) images from 25 participants across four groups. Finite element models were created using **solidworks, **abaqus, and a custom C program, modeling the iris as a neo-Hookean material. We found that post-LPI females had significantly higher normalized elastic modulus (E′=3.81±1.74) than healthy females (E′=0.92±0.31,p=0.004), while no significant difference was observed in males. Post-LPI females also showed significantly higher stiffness than post-LPI males (p=0.003). Here, p denotes the probability value, with p<0.05 considered statistically significant. Our findings suggest that sex-based differences in iris biomechanics may contribute to the higher susceptibility of females to primary angle-closure disease. Despite the small sample size, this preliminary study highlights the need for larger, sex-stratified investigations into glaucoma pathophysiology.more » « less
An official website of the United States government

