skip to main content


Title: Quantifying the qualitative: exploring epistemic network analysis as a method to study work system interactions
Studying interactions faces methodological challenges and existing methods, such as configural diagramming, have limitations. This work demonstrates Epistemic Network Analysis (ENA) as an analytical method to construct configural diagrams. We demonstrated ENA as an analytical tool by applying this method to study dementia caregiver work systems. We conducted 20 semistructured interviews with caregivers to collect caregiving experiences. Guided by the Patient Work System model, we conducted a directed content analysis to identify work system components and used ENA to study interactions between components. By using ENA to create configural diagrams, we identified five frequently occurring interactions, compared work system configurations of caregivers providing care at home and away from home. Although we were underpowered to determine statistically significant differences, we identified visual and qualitative differences. Our results demonstrate the capability of ENA as  more » « less
Award ID(s):
1661036
NSF-PAR ID:
10341784
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Ergonomics
ISSN:
0014-0139
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruis, Andrew R. ; Lee, Seung B. (Ed.)
    While there has been much growth in the use of microblogging platforms (e.g., Twitter) to share information on a range of topics, researchers struggle to analyze the large volumes of data produced on such platforms. Established methods such as Sentiment Analysis (SA) have been criticized over their inaccuracy and limited analytical depth. In this exploratory methodological paper, we propose a combination of SA with Epistemic Network Analysis (ENA) as an alternative approach for providing richer qualitative and quantitative insights into Twitter discourse. We illustrate the application and potential use of these approaches by visualizing the differences between tweets directed or discussing Democrats and Republicans after the COVID-19 Stimulus Package announcement in the US. SA was integrated into ENA models in two ways: as a part of the blocking variable and as a set of codes. Our results suggest that incorporating SA into ENA allowed for a better understanding of how groups viewed the components of the stimulus issue by splitting them by sentiment and enabled a meaningful inclusion of data with singular subject focus into the ENA models. 
    more » « less
  2. This study aims to investigate the collaboration processes of immigrant families as they search for online information together. Immigrant English-language learning adults of lower socioeconomic status often work collaboratively with their children to search the internet. Family members rely on each other’s language and digital literacy skills in this collaborative process known as online search and brokering (OSB). While previous work has identified ecological factors that impact OSB, research has not yet distilled the specific learning processes behind such collaborations. Design/methodology/approach: For this study, the authors adhere to practices of a case study examination. This study’s participants included parents, grandparents and children aged 10–17 years. Most adults were born in Mexico, did not have a college-degree, worked in service industries and represented a lower-SES population. This study conducted two to three separate in-home family visits per family with interviews and online search tasks. Findings: From a case study analysis of three families, this paper explores the funds of knowledge, resilience, ecological support and challenges that children and parents face, as they engage in collaborative OSB experiences. This study demonstrates how in-home computer-supported collaborative processes are often informal, social, emotional and highly relevant to solving information challenges. Research limitations/implications: An intergenerational OSB process is different from collaborative online information problem-solving that happens between classroom peers or coworkers. This study’s research shows how both parents and children draw on their funds of knowledge, resilience and ecological support systems when they search collaboratively, with and for their family members, to problem solve. This is a case study of three families working in collaboration with each other. This case study informs analytical generalizations and theory-building rather than statistical generalizations about families. Practical implications: Designers need to recognize that children and youth are using the same tools as adults to seek high-level critical information. This study’s model suggests that if parents and children are negotiating information seeking with the same technology tools but different funds of knowledge, experience levels and skills, the presentation of information (e.g. online search results, information visualizations) needs to accommodate different levels of understanding. This study recommends designers work closely with marginalized communities through participatory design methods to better understand how interfaces and visuals can help accommodate youth invisible work. Social implications: The authors have demonstrated in this study that learning and engaging in family online searching is not only vital to the development of individual and digital literacy skills, it is a part of family learning. While community services, libraries and schools have a responsibility to support individual digital and information literacy development, this study’s model highlights the need to recognize funds of knowledge, family resiliency and asset-based learning. Schools and teachers should identify and harness youth invisible work as a form of learning at home. The authors believe educators can do this by highlighting the importance of information problem solving in homes and youth in their families. Libraries and community centers also play a critical role in supporting parents and adults for technical assistance (e.g. WiFi access) and information resources. Originality/value: This study’s work indicates new conditions fostering productive joint media engagement (JME) around OSB. This study contributes a generative understanding that promotes studying and designing for JME, where family responsibility is the focus.

     
    more » « less
  3. Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students’ development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models. The control and intervention sections were otherwise identical in how they were taught by the same instructor. We compare learning outcomes between the two sections as measured via pre-post administration of a test of 3D vector concepts and representations called the Test of Representational Competence with Vectors (TRCV). We also compare end of course scores on the Concept Assessment Test in Statics (CATS) and final exam scores. In addition, we analyze student responses on two “multiple choice plus explain” concept questions paired with each of five activities covering the topics of 3D moments, 3D particle equilibrium, rigid body equilibrium (2D and 3D), and frame analysis (2D). The mean pre/post gain across all ten questions was higher for the intervention section, with the largest differences observed on questions relating to 3D rigid body equilibrium. Students in the intervention section also made larger gains on the TRCV and scored better on the final exam compared to the control section, but these results are not statistically significant perhaps due to the small study population. There were no appreciable differences in end-of-course CATS scores. We also present student feedback on the activity worksheets that was slightly more positive for the versions with the models. 
    more » « less
  4. Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students’ development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models. The control and intervention sections were otherwise identical in how they were taught by the same instructor. We compare learning outcomes between the two sections as measured via pre-post administration of a test of 3D vector concepts and representations called the Test of Representational Competence with Vectors (TRCV). We also compare end of course scores on the Concept Assessment Test in Statics (CATS) and final exam scores. In addition, we analyze student responses on two “multiple choice plus explain” concept questions paired with each of five activities covering the topics of 3D moments, 3D particle equilibrium, rigid body equilibrium (2D and 3D), and frame analysis (2D). The mean pre/post gain across all ten questions was higher for the intervention section, with the largest differences observed on questions relating to 3D rigid body equilibrium. Students in the intervention section also made larger gains on the TRCV and scored better on the final exam compared to the control section, but these results are not statistically significant perhaps due to the small study population. There were no appreciable differences in end-of-course CATS scores. We also present student feedback on the activity worksheets that was slightly more positive for the versions with the models. 
    more » « less
  5. Abstract

    Soil biota are increasingly recognized as a primary control on litter decomposition at both local and regional scales, but the precise mechanisms by which biota influence litter decomposition have yet to be identified.

    There are multiple hypothesized mechanisms by which biotic communities may influence litter decomposition—for example, decomposer communities may be specially adapted to local litter inputs and therefore decompose litter from their home ecosystem at elevated rates. This mechanism is known as the home‐field advantage (HFA) hypothesis. Alternatively, litter decomposition rates may simply depend upon the range of metabolic functions present within a decomposer community. This mechanism is known as the functional breadth (FB) hypothesis. However, the relative importance of HFA and FB in litter decomposition is unknown, as are the microbial community drivers of HFA and FB. Potential relationships/trade‐offs between microbial HFA and FB are also unknown.

    To investigate the roles of HFA and FB in litter decomposition, we collected litter and soil from six different ecosystems across the continental US and conducted a full factorial litter × soil inoculum experiment. We measured litter decomposition (i.e. cumulative CO2‐C respired) over 150 days and used an analytical model to calculate the HFA and FB of each microbial decomposer community.

    Our results indicated clear functional differences among decomposer communities, that is, litter sources were decomposed differently by different decomposer communities. These differences were primarily due to differences in FB between different communities, while HFA effects were less evident.

    We observed a positive relationship between HFA and the disturbance‐sensitive bacterial phylum Verruomicrobia, suggesting that HFA may be an important mechanism in undisturbed environments. We also observed a negative relationship between bacterial r versus K strategists and FB, suggesting an important link between microbial life‐history strategies and litter decomposition functions.

    Microbial FB and HFA exhibited a strong unimodal relationship, where high HFA was observed at intermediate FB values, while low HFA was associated with both low and high FB. This suggests that adaptation of decomposers to local plant inputs (i.e. high HFA) constrains FB, which requires broad rather than specialized functionality. Furthermore, this relationship suggests that HFA effects will not be apparent when communities exhibit high FB and therefore decompose all litters well and also when FB is low and communities decompose all litters poorly. Overall, our study provides new insights into the mechanisms by which microbial communities influence the decomposition of leaf litter.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less