skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inactivating SARS-CoV-2 Surrogates on Surfaces Using Engineered Water Nanostructures Incorporated with Nature Derived Antimicrobials
The continuing cases of COVID-19 due to emerging strains of the SARS-CoV-2 virus underscore the urgent need to develop effective antiviral technologies. A crucial aspect of reducing transmission of the virus is through environmental disinfection. To this end, a nanotechnology-based antimicrobial platform utilizing engineered water nanostructures (EWNS) was utilized to challenge the human coronavirus 229E (HCoV-229E), a surrogate of SARS-CoV-2, on surfaces. The EWNS were synthesized using electrospray and ionization of aqueous solutions of antimicrobials, had a size in the nanoscale, and contained both antimicrobial agents and reactive oxygen species (ROS). Various EWNS were synthesized using single active ingredients (AI) as well as their combinations. The results of EWNS treatment indicate that EWNS produced with a cocktail of hydrogen peroxide, citric acid, lysozyme, nisin, and triethylene glycol was able to inactivate 3.8 logs of HCoV-229E, in 30 s of treatment. The delivered dose of antimicrobials to the surface was measured to be in pico to nanograms. These results indicate the efficacy of EWNS technology as a nano-carrier for delivering a minuscule dose while inactivating HCoV-229E, making this an attractive technology against SARS-CoV-2.  more » « less
Award ID(s):
2031785
PAR ID:
10341835
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
12
Issue:
10
ISSN:
2079-4991
Page Range / eLocation ID:
1735
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Among the most consequential unknowns of the devastating COVID-19 pandemic are the durability of immunity and time to likely reinfection. There are limited direct data on SARS-CoV-2 long-term immune responses and reinfection. The aim of this study is to use data on the durability of immunity among evolutionarily close coronavirus relatives of SARS-CoV-2 to estimate times to reinfection by a comparative evolutionary analysis of related viruses SARS-CoV, MERS-CoV, human coronavirus (HCoV)-229E, HCoV-OC43, and HCoV-NL63. Methods: We conducted phylogenetic analyses of the S, M, and ORF1b genes to reconstruct a maximum-likelihood molecular phylogeny of human-infecting coronaviruses. This phylogeny enabled comparative analyses of peak-normalised nucleocapsid protein, spike protein, and whole-virus lysate IgG antibody optical density levels, in conjunction with reinfection data on endemic human-infecting coronaviruses. We performed ancestral and descendent states analyses to estimate the expected declines in antibody levels over time, the probabilities of reinfection based on antibody level, and the anticipated times to reinfection after recovery under conditions of endemic transmission for SARS-CoV-2, as well as the other human-infecting coronaviruses. Findings: We obtained antibody optical density data for six human-infecting coronaviruses, extending from 128 days to 28 years after infection between 1984 and 2020. These data provided a means to estimate profiles of the typical antibody decline and probabilities of reinfection over time under endemic conditions. Reinfection by SARS-CoV-2 under endemic conditions would likely occur between 3 months and 5·1 years after peak antibody response, with a median of 16 months. This protection is less than half the duration revealed for the endemic coronaviruses circulating among humans (5-95% quantiles 15 months to 10 years for HCoV-OC43, 31 months to 12 years for HCoV-NL63, and 16 months to 12 years for HCoV-229E). For SARS-CoV, the 5-95% quantiles were 4 months to 6 years, whereas the 95% quantiles for MERS-CoV were inconsistent by dataset. Interpretation: The timeframe for reinfection is fundamental to numerous aspects of public health decision making. As the COVID-19 pandemic continues, reinfection is likely to become increasingly common. Maintaining public health measures that curb transmission-including among individuals who were previously infected with SARS-CoV-2-coupled with persistent efforts to accelerate vaccination worldwide is critical to the prevention of COVID-19 morbidity and mortality. Funding: US National Science Foundation. 
    more » « less
  2. Coronaviruses are positive sense, single-stranded, enveloped, and non-segmented RNA viruses that belong to the Coronaviridae family within the order Nidovirales and suborder Coronavirinae. Two Alphacoronavirus strains: HCoV-229E and HCoV-NL63 and five Betacoronaviruses: HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2 have so far been recognized as Human Coronaviruses (HCoVs). Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is currently the greatest concern for humanity. Despite the overflow of research on SARS-CoV-2 and other HCoVs published every week, existing knowledge in this area is insufficient for the complete understanding of the viruses and the diseases caused by them. This review is based on the analysis of 210 published works, and it attempts to cover the basic biology of coronaviruses, including the genetic characteristics, life cycle, and host-pathogen interaction, pathogenesis, the antiviral drugs, and vaccines against HCoVs, especially focusing on SARS-CoV-2. Furthermore, we will briefly discuss the potential link between extracellular vesicles (EVs) and SARS-CoV-2/COVID-19 pathophysiology. 
    more » « less
  3. The pandemic of SARS-CoV-2/COVID-19 was reported in December 2019 in Wuhan, China. Pertaining to its high transmissibility and wide host adaptability, this unique human coronavirus spread across the planet inflicting 115 million people and causing 2.5 million deaths (as of March 3rd, 2021). Limited or negligible pre-existing immunity to multiple SARS-CoV-2 variants has resulted in severe morbidity and mortality worldwide, as well as a record-breaking surge in the use of medical-surgical supplies and personal protective equipment. In response to the global need for effective sterilization techniques, this study evaluated the virucidal efficacy of FATHHOME’s self-contained, ozone-based dry-sanitizing device, by dose and time response assessment. We tested inactivation of human coronavirus, HCoV-OC43, a close genetic model of SARS-CoV-2, on porous (N95 filtering facepiece respirator/FFR) and nonporous (glass) surfaces. We started our assays with 20 ppm-10 min ozone exposure, and effectively reduced 99.8% and 99.9% of virus from glass and N95 FFR surfaces, respectively. Importantly, the virus was completely inactivated, below the detection limit (over 6-log10 reduction) with 25 ppm-15 min ozone exposure on both tested surfaces. As expected, a higher ozone exposure (50 ppm-10 min) resulted in faster inactivation of HCoV-OC43 with 100% inactivation from both the surfaces, with no residual ozone present after completion of the 5-min post exposure recapture cycle and no measurable increase in ambient ozone levels. These results confirmed that FATHHOME’s device is suitable for rapid decontamination of SARS-CoV-2-from worn items, frequently touched items, and PPE including N95 FFRs, face shields, and other personal items. 
    more » « less
  4. Abstract The response by vaccine developers to the COVID-19 pandemic has been extraordinary with effective vaccines authorized for emergency use in the United States within 1 year of the appearance of the first COVID-19 cases. However, the emergence of SARS-CoV-2 variants and obstacles with the global rollout of new vaccines highlight the need for platforms that are amenable to rapid tuning and stable formulation to facilitate the logistics of vaccine delivery worldwide. We developed a “designer nanoparticle” platform using phage-like particles (PLPs) derived from bacteriophage lambda for a multivalent display of antigens in rigorously defined ratios. Here, we engineered PLPs that display the receptor-binding domain (RBD) protein from SARS-CoV-2 and MERS-CoV, alone (RBDSARS-PLPs and RBDMERS-PLPs) and in combination (hCoV-RBD PLPs). Functionalized particles possess physiochemical properties compatible with pharmaceutical standards and retain antigenicity. Following primary immunization, BALB/c mice immunized with RBDSARS- or RBDMERS-PLPs display serum RBD-specific IgG endpoint and live virus neutralization titers that, in the case of SARS-CoV-2, were comparable to those detected in convalescent plasma from infected patients. Further, these antibody levels remain elevated up to 6 months post-prime. In dose-response studies, immunization with as little as one microgram of RBDSARS-PLPs elicited robust neutralizing antibody responses. Finally, animals immunized with RBDSARS-PLPs, RBDMERS-PLPs, and hCoV-RBD PLPs were protected against SARS-CoV-2 and/or MERS-CoV lung infection and disease. Collectively, these data suggest that the designer PLP system provides a platform for facile and rapid generation of single and multi-target vaccines. 
    more » « less
  5. ABSTRACT The response by vaccine developers to the COVID-19 pandemic has been extraordinary with effective vaccines authorized for emergency use in the U.S. within one year of the appearance of the first COVID-19 cases. However, the emergence of SARS-CoV-2 variants and obstacles with the global rollout of new vaccines highlight the need for platforms that are amenable to rapid tuning and stable formulation to facilitate the logistics of vaccine delivery worldwide. We developed a “designer nanoparticle” platform using phage-like particles (PLPs) derived from bacteriophage lambda for multivalent display of antigens in rigorously defined ratios. Here, we engineered PLPs that display the receptor binding domain (RBD) protein from SARS-CoV-2 and MERS-CoV, alone (RBDSARS-PLPs, RBDMERS-PLPs) and in combination (hCoV-RBD PLPs). Functionalized particles possess physiochemical properties compatible with pharmaceutical standards and retain antigenicity. Following primary immunization, BALB/c mice immunized with RBDSARS- or RBDMERS-PLPs display serum RBD-specific IgG endpoint and live virus neutralization titers that, in the case of SARS-CoV-2, were comparable to those detected in convalescent plasma from infected patients. Further, these antibody levels remain elevated up to 6 months post-prime. In dose response studies, immunization with as little as one microgram of RBDSARS-PLPs elicited robust neutralizing antibody responses. Finally, animals immunized with RBDSARS-PLPs, RBDMERS-PLPs, and hCoV-RBD PLPs were protected against SARS-CoV-2 and/or MERS-CoV lung infection and disease. Collectively, these data suggest that the designer PLP system provides a platform for facile and rapid generation of single and multi-target vaccines. 
    more » « less