skip to main content

This content will become publicly available on July 19, 2023

Title: Spatial Transcriptomics as a Novel Approach to Redefine Electrical Stimulation Safety
Current standards for safe delivery of electrical stimulation to the central nervous system are based on foundational studies which examined post-mortem tissue for histological signs of damage. This set of observations and the subsequently proposed limits to safe stimulation, termed the “Shannon limits,” allow for a simple calculation (using charge per phase and charge density) to determine the intensity of electrical stimulation that can be delivered safely to brain tissue. In the three decades since the Shannon limits were reported, advances in molecular biology have allowed for more nuanced and detailed approaches to be used to expand current understanding of the physiological effects of stimulation. Here, we demonstrate the use of spatial transcriptomics (ST) in an exploratory investigation to assess the biological response to electrical stimulation in the brain. Electrical stimulation was delivered to the rat visual cortex with either acute or chronic electrode implantation procedures. To explore the influence of device type and stimulation parameters, we used carbon fiber ultramicroelectrode arrays (7 μm diameter) and microwire electrode arrays (50 μm diameter) delivering charge and charge density levels selected above and below reported tissue damage thresholds (range: 2–20 nC, 0.1–1 mC/cm 2 ). Spatial transcriptomics was performed using Visium Spatial more » Gene Expression Slides (10x Genomics, Pleasanton, CA, United States), which enabled simultaneous immunohistochemistry and ST to directly compare traditional histological metrics to transcriptional profiles within each tissue sample. Our data give a first look at unique spatial patterns of gene expression that are related to cellular processes including inflammation, cell cycle progression, and neuronal plasticity. At the acute timepoint, an increase in inflammatory and plasticity related genes was observed surrounding a stimulating electrode compared to a craniotomy control. At the chronic timepoint, an increase in inflammatory and cell cycle progression related genes was observed both in the stimulating vs. non-stimulating microwire electrode comparison and in the stimulating microwire vs. carbon fiber comparison. Using the spatial aspect of this method as well as the within-sample link to traditional metrics of tissue damage, we demonstrate how these data may be analyzed and used to generate new hypotheses and inform safety standards for stimulation in cortex. « less
Authors:
; ; ; ; ;
Award ID(s):
2129817 1707316
Publication Date:
NSF-PAR ID:
10342237
Journal Name:
Frontiers in Neuroscience
Volume:
16
ISSN:
1662-453X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction:Current brain-computer interfaces (BCIs) primarily rely on visual feedback. However, visual feedback may not be sufficient for applications such as movement restoration, where somatosensory feedback plays a crucial role. For electrocorticography (ECoG)-based BCIs, somatosensory feedback can be elicited by cortical surface electro-stimulation [1]. However, simultaneous cortical stimulation and recording is challenging due to stimulation artifacts. Depending on the orientation of stimulating electrodes, their distance to the recording site, and the stimulation intensity, these artifacts may overwhelm the neural signals of interest and saturate the recording bioamplifiers, making it impossible to recover the underlying information [2]. To understand how these factors affect artifact propagation, we performed a preliminary characterization of ECoG signals during cortical stimulation.Materials/Methods/ResultsECoG electrodes were implanted in a 39-year old epilepsy patient as shown in Fig. 1. Pairs of adjacent electrodes were stimulated as a part of language cortical mapping. For each stimulating pair, a charge-balanced biphasic square pulse train of current at 50 Hz was delivered for five seconds at 2, 4, 6, 8 and 10 mA. ECoG signals were recorded at 512 Hz. The signals were then high-pass filtered (≥1.5 Hz, zero phase), and the 5-second stimulation epochs were segmented. Within each epoch, artifact-induced peaks were detectedmore »for each electrode, except the stimulating pair, where signals were clipped due to amplifier saturation. These peaks were phase-locked across electrodes and were 20 ms apart, thus matching the pulse train frequency. The response was characterized by calculating the median peak within the 5-second epochs. Fig. 1 shows a representative response of the right temporal grid (RTG), with the stimulation channel at RTG electrodes 14 and 15. It also shows a hypothetical amplifier saturation contour of an implantable, bi-directional, ECoG-based BCI prototype [2], assuming the supply voltage of 2.2 V and a gain of 66 dB. Finally, we quantify the worstcase scenario by calculating the largest distance between the saturation contour and the midpoint of each stimulating channel.Discussion:Our results indicate that artifact propagation follows a dipole potential distribution with the extent of the saturation region (the interior of the white contour) proportional to the stimulation amplitude. In general, the artifacts propagated farthest when a 10 mA current was applied with the saturation regions extending from 17 to 32 mm away from the midpoint of the dipole. Consistent with the electric dipole model, this maximum spread happened along the direction of the dipole moment. An exception occurred at stimulation channel RTG11-16, for which an additional saturation contour emerged away from the dipole contour (not shown), extending the saturation region to 41 mm. Also, the worst-case scenario was observed at 6 mA stimulation amplitude. This departure could be a sign of a nonlinear, switch-like behavior, wherein additional conduction pathways could become engaged in response to sufficiently high stimulation.Significance:While ECoG stimulation is routinely performed in the clinical setting, quantitative studies of the resulting signals are lacking. Our preliminary study demonstrates that stimulation artifacts largely obey dipole distributions, suggesting that the dipole model could be used to predict artifact propagation. Further studies are necessary to ascertain whether these results hold across other subjects and combinations of stimulation/recording grids. Once completed, these studies will reveal practical design constraints for future implantable bi-directional ECoG-based BCIs. These include parameters such as the distances between and relative orientations of the stimulating and recording electrodes, the choice of the stimulating electrodes, the optimal placement of the reference electrode, and the maximum stimulation amplitude. These findings would also have important implications for the design of custom, low-power bioamplifiers for implantable bi-directional ECoG-based BCIs.References:[1] Hiremath, S. V., et al. "Human perception of electrical stimulation on the surface of somatosensory cortex." PloS one 12.5 (2017): e0176020.[2] Rouse, A. G., et al. "A chronic generalized bi-directional brain-machine interface." Journal of Neural Engineering 8.3 (2011): 036018« less
  2. Objective: To determine if a vestibular prosthesis could improve function in subjects with severe vestibular damage and could be used it as a scientific tool to investigate central vestibular processing. Background: Damage to the vestibular labyrinth is common and usually permanent. We therefore developed and tested a vestibular implant (VI) that is designed to mimic the information normally provided by the vestibular labyrinth to determine if we can reduce vestibular-mediated deficits and study temporal integration of sensory cues in the brain. Design/Methods: Monkeys had electrodes implanted in the semicircular canals of one ear and then severe bilateral vestibular damage was induced with aminoglycosides. Eye movements, perception, and balance were tested before and after vestibular damage and with the VI activated, which supplied head motion information to the brain via electrical stimulation delivered by the implanted electrodes. Humans also had electrode implantation (done in conjunction with a cochlear implant, CI) and they were tested on a temporal binding psychophysical task Results: Stimulation provided by VI in vestibulopathic monkeys improved their balance, perception of spatial orientation, and eye movement responses. Timing experiments in humans using CI and VI stimuli showed that unlike past experiments that used motion to generate the vestibular signal,more »CI and VI signals were received by the cerebral cortex with the same latency and were perceived as simultaneous, but this timing perception was highly sensitive to adaption. Conclusions: VI improves oculomotor, postural, and perceptual behavior in vestibulopathic monkeys and could prove to be an effective way to improve these functions in patients with permanent labyrinthine damage. Timing experiments show that when novel stimuli are used, the brain synthesizes them in accordance with their arrival at the cortex, but that experience can rapidly recalibrate this timing relationship, which may be why normal stimuli that are experienced habitually lack this characteristic.« less
  3. Ultrasmall microelectrode arrays have the potential to improve the spatial resolution of microstimulation. Carbon fiber (CF) microelectrodes with cross-sections of less than 8 μm have been demonstrated to penetrate cortical tissue and evoke minimal scarring in chronic implant tests. In this study, we investigate the stability and performance of neural stimulation electrodes comprised of electrodeposited platinum-iridium (PtIr) on carbon fibers. We conducted pulse testing and characterized charge injection in vitro and recorded voltage transients in vitro and in vivo. Standard electrochemical measurements (impedance spectroscopy and cyclic voltammetry) and visual inspection (scanning electron microscopy) were used to assess changes due to pulsing. Similar to other studies, the application of pulses caused a decrease in impedance and a reduction in voltage transients, but analysis of the impedance data suggests that these changes are due to surface modification and not permanent changes to the electrode. Comparison of scanning electron microscope images before and after pulse testing confirmed electrode stability.
  4. Abstract

    Objective. There has been growing interest in understanding multisensory integration in the cortex through activation of multiple sensory and motor pathways to treat brain disorders, such as tinnitus or essential tremors. For tinnitus, previous studies show that combined sound and body stimulation can modulate the auditory pathway and lead to significant improvements in tinnitus symptoms. Considering that tinnitus is a type of chronic auditory pain, bimodal stimulation could potentially alter activity in the somatosensory pathway relevant for treating chronic pain. As an initial step towards that goal, we mapped and characterized neuromodulation effects in the somatosensory cortex (SC) in response to sound and/or electrical stimulation of the body.Approach.We first mapped the topographic organization of activity across the SC of ketamine-anesthetized guinea pigs through electrical stimulation of different body locations using subcutaneous needle electrodes or with broadband acoustic stimulation. We then characterized how neural activity in different parts of the SC could be facilitated or suppressed with bimodal stimulation.Main results. The topography in the SC of guinea pigs in response to electrical stimulation of the body aligns consistently to that shown in previous rodent studies. Interestingly, auditory broadband noise stimulation primarily excited SC areas that typically respond to stimulation ofmore »lower body locations. Although there was only a small subset of SC locations that were excited by acoustic stimulation alone, all SC recording sites could be altered (facilitated or suppressed) with bimodal stimulation. Furthermore, specific regions of the SC could be modulated by stimulating an appropriate body region combined with broadband noise.Significance. These findings show that bimodal stimulation can excite or modulate firing across a widespread yet targeted population of SC neurons. This approach may provide a non-invasive method for altering or disrupting abnormal firing patterns within certain parts of the SC for chronic pain treatment.

    « less
  5. According to the National Institute of Deafness and other Communication Disorders 2012 report, the number of cochlear implant (CI) users is steadily increasing from 324,000 CI users worldwide. The cochlea, located in the inner ear, is a snail-like structure that exhibits a tonotopic geometry where acoustic waves are filtered spatially according to frequency. Throughout the cochlea, there exist hair cells that transduce sensed acoustic waves into an electrical signal that is carried by the auditory nerve to ultimately reach the auditory cortex of the brain. A cochlear implant bridges the gap if non-functional hair cells are present. Conventional CIs directly inject an electrical current into surrounding tissue via an implanted electrode array and exploit the frequency-to-place mapping of the cochlea. However, the current is dispersed in perilymph, a conductive bodily fluid within the cochlea, causing a spread of excitation. Magnetic fields are more impervious to the effects of the cochlear environment due to the material properties of perilymph and surrounding tissue, demonstrating potential to improve precision. As an alternative to conventional CI electrodes, the development and miniaturization of microcoils intended for micromagnetic stimulation of intracochlear neural elements is described. As a step toward realizing a microcoil array sized for cochlearmore »implantation, human-sized coils were prototyped via aerosol jet printing. The batch reproducible aerosol jet printed microcoils have a diameter of 1800 μm, trace width and trace spacing of 112.5 μm, 12 μm thickness, and inductance values of approximately 15.5 nH. Modelling results indicate that the coils have a combined depolarization–hyperpolarization region that spans 1.5 mm and produce a more restrictive spread of activation when compared with conventional CI.« less