skip to main content

Title: Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years (IODP U1479)
Abstract. The Greater Cape Floristic Region (GCFR) ofSouth Africa is a biodiversity hotspot of global significance, and itsarcheological record has substantially contributed to the understanding ofmodern human origins. For both reasons, the climate and vegetation historyof southwestern South Africa is of interest to numerous fields. Currentlyknown paleoenvironmental records cover the Holocene, the lastglacial–interglacial transition and parts of the last glaciation but do notencompass a full glacial–interglacial cycle. To obtain a continuousvegetation record of the last Pleistocene glacial–interglacial cycles, westudied pollen, spores and micro-charcoal of deep-sea sediments from IODPSite U1479 retrieved from SW of Cape Town. We compare our palynologicalresults of the Pleistocene with previously published results of Pliocenematerial from the same site. We find that the vegetation of the GCFR, inparticular fynbos and afrotemperate forest, responds to precessional forcingof climate. The micro-charcoal record confirms the importance of fires inthe fynbos vegetation. Ericaceae-rich and Asteraceae-rich types of fynboscould extend on the western part of the Paleo-Agulhas Plain (PAP), whichemerged during periods of low sea level of the Pleistocene.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Climate of the Past
Page Range or eLocation-ID:
1 to 21
Sponsoring Org:
National Science Foundation
More Like this
  1. The Sahel is highly sensitive to flooding, droughts, and wildfires, risking food and other resources on which nearly 100 million people depend. Understanding how natural variations of precipitation and vegetation fluctuate during high-amplitude glacial- interglacial cycles can help constrain the regional sensitivity to a wide range of external forcings. Further, the interactions between climate and ecosystem changes remain uncertain for sub-Saharan Africa due to the lack of long, highly-resolved, quantitative, terrestrial records. Here we present precipitation and vegetation records from ~215 ka to present, derived from long leaf wax hydrogen (δDwax) and carbon (δ13Cwax) isotopes, respectively. These geochemical records are derived from ODP Site 959 in the Gulf of Guinea, where westerly winds and major river systems transport Western Sahel-sourced terrestrial leaf waxes. We find that, unlike many African records that are precessionally- driven, obliquity plays an important role in West African late Pleistocene hydroclimate, suggesting that a cross-equatorial insolation gradient may be more important in this area and certainly that drivers of orbital-scale precipitation change are regionally-specific. Further, vegetation changes appear to have a complex relationship with hydroclimate over this mid-late Pleistocene interval. A potential shift in this climate-environment coupling at MIS6 ~130 ka, which is a time whenmore »there is also a shift in forcing mechanisms in East Africa, suggests that the global boundary condition changes associated with large glacial- interglacial cycling may affect equatorial climate.« less
  2. The Iberian margin is a well-known source of rapidly accumulating sediment that contains a high-fidelity record of millennial climate variability (MCV) for the late Pleistocene. The late Sir Nicholas (Nick) Shackleton demonstrated that piston cores from the region can be correlated precisely to polar ice cores in both hemispheres. Moreover, the narrow continental shelf off Portugal results in the rapid delivery of terrestrial material to the deep-sea environment, thereby permitting correlation of marine and ice core records to European terrestrial sequences. Few places exist in the world where such detailed marine-ice-terrestrial linkages are possible. The continuity, high sedimentation rates, and fidelity of climate signals preserved in Iberian margin sediments make this region a prime target for ocean drilling. During Integrated Ocean Drilling Program Expedition 339 (Mediterranean Outflow), one of the sites proposed here was drilled to a total depth of 155.9 meters below seafloor in multiple holes. At Site U1385 (the “Shackleton site”) a complete record of hemipelagic sedimentation was recovered for the last 1.45 My corresponding to Marine Isotope Stage 47 with sedimentation rates of 10–20 cm/ky. Preliminary results from Site U1385 demonstrate the great promise of the Iberian margin to yield long records of millennial-scale climate change andmore »land–sea comparisons. International Ocean Discovery Program (IODP) Expedition 397 will extend this remarkable sediment archive through the Pliocene and expand the depth range of available sites by drilling additional sequences in water depths from 1304 to 4686 meters below sea level (mbsl). This depth transect is designed to complement those sites drilled during Expedition 339 (560–1073 mbsl) where sediment was recovered at intermediate water depth under the influence of Mediterranean Outflow Water (MOW). Together, the sites recovered during Expeditions 339 and 397 will constitute a complete depth transect with which to study past variability of all the major subsurface water masses of the eastern North Atlantic. Because most of the mass, thermal inertia, and carbon in the ocean-atmosphere system is contained in the deep ocean, well-placed depth transects in each of the major ocean basins are needed to understand the underlying mechanisms of glacial–interglacial cycles and MCV. We have identified four primary sites (SHACK-4C, SHACK-10B, SHACK-11B, and SHACK-14A) at which multiple holes will be drilled to ensure complete recovery of the stratigraphic sections at each site, ranging in age from the latest Miocene to Holocene. Building on the success of Site U1385 and given the seminal importance of the Iberian margin for paleoclimatology and marine-ice-terrestrial correlations, the cores recovered during Expedition 397 will provide present and future generations of paleoceanographers with the raw material needed to reconstruct the North Atlantic climate at high temporal resolution for the entire Quaternary and Pliocene.« less
  3. Abstract Waterfall Bluff is a rock shelter in eastern Pondoland, South Africa, adjacent to a narrow continental shelf that limited coastline movements across glacial/interglacial cycles. The archaeological deposits are characterized by well-preserved stratigraphy, faunal, and botanical remains alongside abundant stone artifacts and other materials. A comprehensive dating protocol consisting of 5 optically stimulated luminescence ages and 51 accelerator mass spectrometry 14 C ages shows that the record of hunter-gatherer occupations at Waterfall Bluff persisted from the late Pleistocene to the Holocene, spanning the last glacial maximum and the transition from the Pleistocene to the Holocene. Here, we provide detailed descriptions about the sedimentary sequence, chronology, and characteristics of the archaeological deposits at Waterfall Bluff. Remains of marine mollusks and marine fish also show, for the first time, that coastal foraging was a component of some hunter-gatherer groups’ subsistence practices during glacial phases in the late Pleistocene. The presence of marine fish and shellfish further demonstrates that hunter-gatherers selectively targeted coastal resources from intertidal and estuarine habitats. Our results therefore underscore the idea that Pondoland's coastline remained a stable and predictable point on the landscape over the last glacial/interglacial transition being well positioned for hunter-gatherers to access resources from the nearbymore »coastline, narrow continental shelf, and inland areas.« less
  4. Abstract

    Past climate records reveal many instances of rapid climate change that are often coincident with fast changes in atmospheric greenhouse gas concentrations, suggesting links and positive feedbacks between the carbon cycle and the physical climate system. The carbon reservoirs that might have played an important role during these past episodes of rapid change include near-surface soil and peatland carbon, permafrost, carbon stored in vegetation, methane hydrates in deep-sea sediments, volcanism, and carbon stored in parts of the ocean that are easily ventilated through changes in circulation. To determine whether similar changes might lie in store in our future, we must gain a better understanding of the physics, biogeochemistry, dynamics, and feedbacks involved in such events. Specifically, we need to ascertain the main natural sources of atmospheric carbon dioxide and methane linked to rapid climate events in the paleoclimate record, and understand the mechanisms, triggers, thresholds, and feedbacks that were involved. Our review contributes to this focus issue by synthesizing results from nine studies covering a broad range of past time episodes. Studies are categorized into (a) episodes of massive carbon release millions of years ago; (b) the transition from the last glacial to the current interglacial 19 000–11 000 years ago;more »and (c) the current era. We conclude with a discussion on major remaining research challenges and implications for future projections and risk assessment.

    « less
  5. Understanding the history of the Greenland Ice Sheet (GrIS) is critical for determining its sensitivity to warming and contribution to sea level; however, that history is poorly known before the last interglacial. Most knowledge comes from interpretation of marine sediment, an indirect record of past ice-sheet extent and behavior. Subglacial sediment and rock, retrieved at the base of ice cores, provide terrestrial evidence for GrIS behavior during the Pleistocene. Here, we use multiple methods to determine GrIS history from subglacial sediment at the base of the Camp Century ice core collected in 1966. This material contains a stratigraphic record of glaciation and vegetation in northwestern Greenland spanning the Pleistocene. Enriched stable isotopes of pore-ice suggest precipitation at lower elevations implying ice-sheet absence. Plant macrofossils and biomarkers in the sediment indicate that paleo-ecosystems from previous interglacial periods are preserved beneath the GrIS. Cosmogenic26Al/10Be and luminescence data bracket the burial of the lower-most sediment between <3.2 ± 0.4 Ma and >0.7 to 1.4 Ma. In the upper-most sediment, cosmogenic26Al/10Be data require exposure within the last 1.0 ± 0.1 My. The unique subglacial sedimentary record from Camp Century documents at least two episodes of ice-free, vegetated conditions, each followed by glaciation. The lowermore »sediment derives from an Early Pleistocene GrIS advance.26Al/10Be ratios in the upper-most sediment match those in subglacial bedrock from central Greenland, suggesting similar ice-cover histories across the GrIS. We conclude that the GrIS persisted through much of the Pleistocene but melted and reformed at least once since 1.1 Ma.

    « less