Microorganisms often move through viscoelastic environments, as biological fluids frequently have a rich microstructure owing to the presence of large polymeric molecules. Research on the effect of fluid elasticity on the swimming kinematics of these organisms has usually been focused on those that move via cilia or flagellum. Experimentally, Shen (X. N. Shen et al. , Phys. Rev. Lett. , 2011, 106 , 208101) reported that the nematode C. elegans , a model organism used to study undulatory motion, swims more slowly as the Deborah number describing the fluid's elasticity is increased. This phenomenon has not been thoroughly studied via a fully resolved three-dimensional simulation; moreover, the effect of fluid elasticity on the swimming speed of organisms moving via euglenoid movement, such as E. gracilis , is completely unknown. In this study, we discuss the simulation of the arbitrary motion of an undulating or pulsating swimmer that occupies finite volume in three dimensions, with the ability to specify any differential viscoelastic rheological model for the surrounding fluid. To accomplish this task, we use a modified version of the Immersed Finite Element Method presented in a previous paper by Guido and Saadat in 2018 (A. Saadat et al. , Phys. Rev. E , 2018, 98 , 063316). In particular, this version allows for the simulation of deformable swimmers such that they evolve through an arbitrary set of specified shapes via a conformation-driven force. From our analysis, we observe several key trends not found in previous two-dimensional simulations or theoretical analyses for C. elegans , as well as novel results for the amoeboid motion. In particular, we find that regions of high polymer stress concentrated at the head and tail of the swimming C. elegans are created by strong extensional flow fields and are associated with a decrease in swimming speed for a given swimming stroke. In contrast, in two dimensions these regions of stress are commonly found distributed along the entire body, likely owing to the lack of a third dimension for polymer relaxation. A comparison of swim speeds shows that the calculations in two-dimensional simulations result in an over-prediction of the speed reduction. We believe that our simulation tool accurately captures the swimming motion of the two aforementioned model swimmers and furthermore, allows for the simulation of multiple deformable swimmers, as well as more complex swimming geometries. This methodology opens many new possibilities for future studies of swimmers in viscoelastic fluids.
more »
« less
Optimal slip velocities of micro-swimmers with arbitrary axisymmetric shapes
This article presents a computational approach for determining the optimal slip velocities on any given shape of an axisymmetric micro-swimmer suspended in a viscous fluid. The objective is to minimize the power loss to maintain a target swimming speed, or equivalently to maximize the efficiency of the micro-swimmer. Owing to the linearity of the Stokes equations governing the fluid motion, we show that this PDE-constrained optimization problem reduces to a simpler quadratic optimization problem, whose solution is found using a high-order accurate boundary integral method. We consider various families of shapes parameterized by the reduced volume and compute their swimming efficiency. Among those, prolate spheroids were found to be the most efficient micro-swimmer shapes for a given reduced volume. We propose a simple shape-based scalar metric that can determine whether the optimal slip on a given shape makes it a pusher, a puller or a neutral swimmer.
more »
« less
- PAR ID:
- 10342557
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 910
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Microorganisms are commonly found swimming in complex biological fluids such as mucus and these fluids respond elastically to deformation. These viscoelastic fluids have been previously shown to affect the swimming kinematics of these microorganisms in non-trivial ways depending on the rheology of the fluid, the particular swimming gait and the structural properties of the immersed body. In this report we put forth a previously unmentioned mechanism by which swimming organisms can experience a speed increase in a viscoelastic fluid. Using numerical simulations and asymptotic theory we find that significant swirling flow around a microscopic swimmer couples with the elasticity of the fluid to generate a marked increase in the swimming speed. We show that the speed enhancement is related to the introduction of mixed flow behind the swimmer and the presence of hoop stresses along its body. Furthermore, this effect persists when varying the fluid rheology and when considering different swimming gaits. This, combined with the generality of the phenomenon (i.e. the coupling of vortical flow with fluid elasticity near a microscopic swimmer), leads us to believe that this method of speed enhancement could be present for a wide range of microorganisms moving through complex fluids.more » « less
-
null (Ed.)We investigate the self-propulsion of an inertial swimmer in a linearly density stratified fluid using the archetypal squirmer model which self-propels by generating tangential surface waves. We quantify swimming speeds for pushers (propelled from the rear) and pullers (propelled from the front) by direct numerical solution of the Navier–Stokes equations using the finite volume method for solving the fluid flow and the distributed Lagrange multiplier method for modelling the swimmer. The simulations are performed for Reynolds numbers ( $Re$ ) between 5 and 100 and Froude numbers ( $Fr$ ) between 1 and 10. We find that increasing the fluid stratification strength reduces the swimming speeds of both pushers and pullers relative to their speeds in a homogeneous fluid. The increase in the buoyancy force experienced by these squirmers due to the trapping of lighter fluid in their respective recirculatory regions as they move in the heavier fluid is one of the reasons for this reduction. With increasing the stratification, the isopycnals tend to deform less, which offers resistance to the flow generated by the squirmers around them to propel themselves. This resistance increases with stratification, thus, reducing the squirmer swimming velocity. Stratification also stabilizes the flow around a puller keeping it axisymmetric even at high $Re$ , thus, leading to stability which is otherwise absent in a homogeneous fluid for $Re$ greater than $O(10)$ . On the contrary, a strong stratification leads to instability in the motion of pushers by making the flow around them unsteady and three-dimensional, which is otherwise steady and axisymmetric in a homogeneous fluid. A pusher is a more efficient swimmer than a puller owing to efficient convection of vorticity along its surface and downstream. Data for the mixing efficiency generated by individual squirmers explain the trends observed in the mixing produced by a swarm of squirmers.more » « less
-
Biological microorganisms and artificial micro-swimmers often locomote in heterogeneous viscous environments consisting of networks of obstacles embedded into viscous fluid media. In this work, we use the squirmer model and present a numerical investigation of the effects of shape on swimming in a heterogeneous medium. Specifically, we analyse the microorganism's propulsion speed as well as its energetic cost and swimming efficiency. The analysis allows us to probe the general characteristics of swimming in a heterogeneous viscous environment in comparison with the case of a purely viscous fluid. We found that a spheroidal microorganism always propels faster, expends less energy and is more efficient than a spherical microorganism in either a homogeneous fluid or a heterogeneous medium. Moreover, we determined that above a critical eccentricity, a spheroidal microorganism in a heterogeneous medium can swim faster than a spherical microorganism in a homogeneous fluid. Based on an analysis of the forces acting on the squirmer, we offer an explanation for the decrease in the squirmer's speed observed in heterogeneous media compared with homogeneous fluids.more » « less
-
The hydrodynamic interactions between a sedimenting microswimmer and a solid wall have ubiquitous biological and technological applications. A plethora of gravity-induced swimming dynamics near a planar no-slip wall provide a platform for designing artificial microswimmers that can generate directed propulsion through their translation–rotation coupling near a wall. In this work, we provide exact solutions for a squirmer (a model swimmer of spherical shape with a prescribed slip velocity) facing either towards or away from a planar wall perpendicular to gravity. These exact solutions are used to validate a numerical code based on the boundary integral method with an adaptive mesh for distances from the wall down to 0.1 % of the squirmer radius. This boundary integral code is then used to investigate the rich gravity-induced dynamics near a wall, mapping out the detailed bifurcation structures of the swimming dynamics in terms of orientation and distance to the wall. Simulation results show that a squirmer may traverse the wall, move to a fixed point at a given height with a fixed orientation in a monotonic way or in an oscillatory fashion, or oscillate in a limit cycle in the presence of wall repulsion.more » « less
An official website of the United States government

