skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive Early-Learning Correction for Segmentation from Noisy Annotations
Deep learning in the presence of noisy annotations has been studied extensively in classification, but much less in segmentation tasks. In this work, we study the learning dynamics of deep segmentation networks trained on inaccurately-annotated data. We discover a phenomenon that has been previously reported in the context of classification: the networks tend to first fit the clean pixel-level labels during an "early-learning" phase, before eventually memorizing the false annotations. However, in contrast to classification, memorization in segmentation does not arise simultaneously for all semantic categories. Inspired by these findings, we propose a new method for segmentation from noisy annotations with two key elements. First, we detect the beginning of the memorization phase separately for each category during training. This allows us to adaptively correct the noisy annotations in order to exploit early learning. Second, we incorporate a regularization term that enforces consistency across scales to boost robustness against annotation noise. Our method outperforms standard approaches on a medical-imaging segmentation task where noises are synthesized to mimic human annotation errors. It also provides robustness to realistic noisy annotations present in weakly-supervised semantic segmentation, achieving state-of-the-art results on PASCAL VOC 2012.  more » « less
Award ID(s):
1922658
PAR ID:
10342813
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Noisy labels can significantly affect the performance of deep neural networks (DNNs). In medical image segmentation tasks, annotations are error-prone due to the high demand in annotation time and in the annotators' expertise. Existing methods mostly tackle label noise in classification tasks. Their independent-noise assumptions do not fit label noise in segmentation task. In this paper, we propose a novel noise model for segmentation problems that encodes spatial correlation and bias, which are prominent in segmentation annotations. Further, to mitigate such label noise, we propose a label correction method to recover true label progressively. We provide theoretical guarantees of the correctness of the proposed method. Experiments show that our approach outperforms current state-of-the-art methods on both synthetic and real-world noisy annotations. 
    more » « less
  2. Noisy labels can significantly affect the performance of deep neural networks (DNNs). In medical image segmentation tasks, annotations are error-prone due to the high demand in annotation time and in the annotators' expertise. Existing methods mostly tackle label noise in classification tasks. Their independent-noise assumptions do not fit label noise in segmentation task. In this paper, we propose a novel noise model for segmentation problems that encodes spatial correlation and bias, which are prominent in segmentation annotations. Further, to mitigate such label noise, we propose a label correction method to recover true label progressively. We provide theoretical guarantees of the correctness of the proposed method. Experiments show that our approach outperforms current state-of-the-art methods on both synthetic and real-world noisy annotations. 
    more » « less
  3. null (Ed.)
    This paper introduces robustness verification for semantic segmentation neural networks (in short, semantic segmentation networks [SSNs]), building on and extending recent approaches for robustness verification of image classification neural networks. Despite recent progress in developing verification methods for specifications such as local adversarial robustness in deep neural networks (DNNs) in terms of scalability, precision, and applicability to different network architectures, layers, and activation functions, robustness verification of semantic segmentation has not yet been considered. We address this limitation by developing and applying new robustness analysis methods for several segmentation neural network architectures, specifically by addressing reachability analysis of up-sampling layers, such as transposed convolution and dilated convolution. We consider several definitions of robustness for segmentation, such as the percentage of pixels in the output that can be proven robust under different adversarial perturbations, and a robust variant of intersection-over-union (IoU), the typical performance evaluation measure for segmentation tasks. Our approach is based on a new relaxed reachability method, allowing users to select the percentage of a number of linear programming problems (LPs) to solve when constructing the reachable set, through a relaxation factor percentage. The approach is implemented within NNV, then applied and evaluated on segmentation datasets, such as a multi-digit variant of MNIST known as M2NIST. Thorough experiments show that by using transposed convolution for up-sampling and average-pooling for down-sampling, combined with minimizing the number of ReLU layers in the SSNs, we can obtain SSNs with not only high accuracy (IoU), but also that are more robust to adversarial attacks and amenable to verification. Additionally, using our new relaxed reachability method, we can significantly reduce the verification time for neural networks whose ReLU layers dominate the total analysis time, even in classification tasks. 
    more » « less
  4. Weakly supervised text classification methods typically train a deep neural classifier based on pseudo-labels. The quality of pseudo-labels is crucial to final performance but they are inevitably noisy due to their heuristic nature, so selecting the correct ones has a huge potential for performance boost. One straightforward solution is to select samples based on the softmax probability scores in the neural classifier corresponding to their pseudo-labels. However, we show through our experiments that such solutions are ineffective and unstable due to the erroneously high-confidence predictions from poorly calibrated models. Recent studies on the memorization effects of deep neural models suggest that these models first memorize training samples with clean labels and then those with noisy labels. Inspired by this observation, we propose a novel pseudo-label selection method LOPS that takes learning order of samples into consideration. We hypothesize that the learning order reflects the probability of wrong annotation in terms of ranking, and therefore, propose to select the samples that are learnt earlier. LOPS can be viewed as a strong performance-boost plug-in to most existing weakly-supervised text classification methods, as confirmed in extensive experiments on four real-world datasets. 
    more » « less
  5. This manuscript presents the updated version of the Neural Network Verification (NNV) tool. NNV is a formal verification software tool for deep learning models and cyber-physical systems with neural network components. NNV was first introduced as a verification framework for feedforward and convolutional neural networks, as well as for neural network control systems. Since then, numerous works have made significant improvements in the verification of new deep learning models, as well as tackling some of the scalability issues that may arise when verifying complex models. In this new version of NNV, we introduce verification support for multiple deep learning models, including neural ordinary differential equations, semantic segmentation networks and recurrent neural networks, as well as a collection of reachability methods that aim to reduce the computation cost of reachability analysis of complex neural networks. We have also added direct support for standard input verification formats in the community such as VNNLIB (verification properties), and ONNX (neural networks) formats. We present a collection of experiments in which NNV verifies safety and robustness properties of feedforward, convolutional, semantic segmentation and recurrent neural networks, as well as neural ordinary differential equations and neural network control systems. Furthermore, we demonstrate the capabilities of NNV against a commercially available product in a collection of benchmarks from control systems, semantic segmentation, image classification, and time-series data. 
    more » « less