skip to main content


Title: Lagrangian skeleta and plane curve singularities
Abstract We construct closed arboreal Lagrangian skeleta associated to links of isolated plane curve singularities. This yields closed Lagrangian skeleta for Weinstein pairs $$(\mathbb {C}^2,\Lambda )$$ ( C 2 , Λ ) and Weinstein 4-manifolds $$W(\Lambda )$$ W ( Λ ) associated to max-tb Legendrian representatives of algebraic links $$\Lambda \subseteq (\mathbb {S}^3,\xi _\text {st})$$ Λ ⊆ ( S 3 , ξ st ) . We provide computations of Legendrian and Weinstein invariants, and discuss the contact topological nature of the Fomin–Pylyavskyy–Shustin–Thurston cluster algebra associated to a singularity. Finally, we present a conjectural ADE-classification for Lagrangian fillings of certain Legendrian links and list some related problems.  more » « less
Award ID(s):
1942363
NSF-PAR ID:
10342847
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Fixed Point Theory and Applications
Volume:
24
Issue:
2
ISSN:
1661-7738
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For each odd integern≥<#comment/>3n \geq 3, we construct a rank-3 graphΛ<#comment/>n\Lambda _nwith involutionγ<#comment/>n\gamma _nwhose realC∗<#comment/>C^*-algebraCR∗<#comment/>(Λ<#comment/>n,γ<#comment/>n)C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda _n, \gamma _n)is stably isomorphic to the exotic Cuntz algebraEn\mathcal E_n. This construction is optimal, as we prove that a rank-2 graph with involution(Λ<#comment/>,γ<#comment/>)(\Lambda ,\gamma )can never satisfyCR∗<#comment/>(Λ<#comment/>,γ<#comment/>)∼<#comment/>MEEnC^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )\sim _{ME} \mathcal E_n, and Boersema reached the same conclusion for rank-1 graphs (directed graphs) in [Münster J. Math.10(2017), pp. 485–521, Corollary 4.3]. Our construction relies on a rank-1 graph with involution(Λ<#comment/>,γ<#comment/>)(\Lambda , \gamma )whose realC∗<#comment/>C^*-algebraCR∗<#comment/>(Λ<#comment/>,γ<#comment/>)C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )is stably isomorphic to the suspensionSRS \mathbb {R}. In the Appendix, we show that theii-fold suspensionSiRS^i \mathbb {R}is stably isomorphic to a graph algebra iff−<#comment/>2≤<#comment/>i≤<#comment/>1-2 \leq i \leq 1.

     
    more » « less
  2. We develop a set of tools for doing computations in and of (partially) wrapped Fukaya categories. In particular, we prove (1) a descent (cosheaf) property for the wrapped Fukaya category with respect to so-called Weinstein sectorial coverings and (2) that the partially wrapped Fukaya category of a Weinstein manifold with respect to a mostly Legendrian stop is generated by the cocores of the critical handles and the linking disks to the stop. We also prove (3) a ‘stop removal equals localization’ result, and (4) that the Fukaya–Seidel category of a Lefschetz fibration with Liouville fiber is generated by the Lefschetz thimbles. These results are derived from three main ingredients, also of independent use: (5) a Künneth formula (6) an exact triangle in the Fukaya category associated to wrapping a Lagrangian through a Legendrian stop at infinity and (7) a geometric criterion for when a pushforward functor between wrapped Fukaya categories of Liouville sectors is fully faithful.

     
    more » « less
  3. Abstract We study several model-theoretic aspects of W $$^*$$ ∗ -probability spaces, that is, $$\sigma $$ σ -finite von Neumann algebras equipped with a faithful normal state. We first study the existentially closed W $$^*$$ ∗ -spaces and prove several structural results about such spaces, including that they are type III $$_1$$ 1 factors that tensorially absorb the Araki–Woods factor $$R_\infty $$ R ∞ . We also study the existentially closed objects in the restricted class of W $$^*$$ ∗ -probability spaces with Kirchberg’s QWEP property, proving that $$R_\infty $$ R ∞ itself is such an existentially closed space in this class. Our results about existentially closed probability spaces imply that the class of type III $$_1$$ 1 factors forms a $$\forall _2$$ ∀ 2 -axiomatizable class. We show that for $$\lambda \in (0,1)$$ λ ∈ ( 0 , 1 ) , the class of III $$_\lambda $$ λ factors is not $$\forall _2$$ ∀ 2 -axiomatizable but is $$\forall _3$$ ∀ 3 -axiomatizable; this latter result uses a version of Keisler’s Sandwich theorem adapted to continuous logic. Finally, we discuss some results around elementary equivalence of III $$_\lambda $$ λ factors. Using a result of Boutonnet, Chifan, and Ioana, we show that, for any $$\lambda \in (0,1)$$ λ ∈ ( 0 , 1 ) , there is a family of pairwise non-elementarily equivalent III $$_\lambda $$ λ factors of size continuum. While we cannot prove the same result for III $$_1$$ 1 factors, we show that there are at least three pairwise non-elementarily equivalent III $$_1$$ 1 factors by showing that the class of full factors is preserved under elementary equivalence. 
    more » « less
  4. Abstract We obtain new quantitative estimates on Weyl Law remainders under dynamical assumptions on the geodesic flow. On a smooth compact Riemannian manifold ( M ,  g ) of dimension n , let $$\Pi _\lambda $$ Π λ denote the kernel of the spectral projector for the Laplacian, $$\mathbb {1}_{[0,\lambda ^2]}(-\Delta _g)$$ 1 [ 0 , λ 2 ] ( - Δ g ) . Assuming only that the set of near periodic geodesics over $${W}\subset M$$ W ⊂ M has small measure, we prove that as $$\lambda \rightarrow \infty $$ λ → ∞ $$\begin{aligned} \int _{{W}} \Pi _\lambda (x,x)dx=(2\pi )^{-n}{{\,\textrm{vol}\,}}_{_{{\mathbb {R}}^n}}\!(B){{\,\textrm{vol}\,}}_g({W})\,\lambda ^n+O\Big (\frac{\lambda ^{n-1}}{\log \lambda }\Big ), \end{aligned}$$ ∫ W Π λ ( x , x ) d x = ( 2 π ) - n vol R n ( B ) vol g ( W ) λ n + O ( λ n - 1 log λ ) , where B is the unit ball. One consequence of this result is that the improved remainder holds on all product manifolds, in particular giving improved estimates for the eigenvalue counting function in the product setup. Our results also include logarithmic gains on asymptotics for the off-diagonal spectral projector $$\Pi _\lambda (x,y)$$ Π λ ( x , y ) under the assumption that the set of geodesics that pass near both x and y has small measure, and quantitative improvements for Kuznecov sums under non-looping type assumptions. The key technique used in our study of the spectral projector is that of geodesic beams. 
    more » « less
  5. Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ⁢ ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ⁢ ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ⁢ ( a t ) - h D ⁢ ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ⁢ ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ⁢ ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ⁢ ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ ⁢ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number. 
    more » « less