skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Newton polytopes of Lagrangian augmentations
Abstract This note explores the use of Newton polytopes in the study of Lagrangian fillings of Legendrian submanifolds. In particular, we show that Newton polytopes associated to augmented values of Reeb chords can distinguish infinitely many distinct Lagrangian fillings, both for Legendrian links and higher dimensional Legendrian spheres. The computations we perform work in finite characteristic, which significantly simplifies arguments and also allows us to show that there exist Legendrian links with infinitely many nonorientable exact Lagrangian fillings.  more » « less
Award ID(s):
2103188
PAR ID:
10489903
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Bulletin of the London Mathematical Society
ISSN:
0024-6093
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We construct closed arboreal Lagrangian skeleta associated to links of isolated plane curve singularities. This yields closed Lagrangian skeleta for Weinstein pairs $$(\mathbb {C}^2,\Lambda )$$ ( C 2 , Λ ) and Weinstein 4-manifolds $$W(\Lambda )$$ W ( Λ ) associated to max-tb Legendrian representatives of algebraic links $$\Lambda \subseteq (\mathbb {S}^3,\xi _\text {st})$$ Λ ⊆ ( S 3 , ξ st ) . We provide computations of Legendrian and Weinstein invariants, and discuss the contact topological nature of the Fomin–Pylyavskyy–Shustin–Thurston cluster algebra associated to a singularity. Finally, we present a conjectural ADE-classification for Lagrangian fillings of certain Legendrian links and list some related problems. 
    more » « less
  2. We study Legendrian surfaces determined by cubic planar graphs. Graphs with distinct chromatic polynomials determine surfaces that are not Legendrian isotopic, thus giving many examples of non-isotopic Legendrian surfaces with the same classical invariants. The Legendrians have no exact Lagrangian fillings, but have many interesting non-exact fillings. We obtain these results by studying sheaves on a three-ball with microsupport in the surface. The moduli of such sheaves has a concrete description in terms of the graph and a beautiful embedding as a holomorphic Lagrangian submanifold of a symplectic period domain, a Lagrangian that has appeared in the work of Dimofte–Gabella–Goncharov. We exploit this structure to find conjectural open Gromov–Witten invariants for the non-exact filling, following Aganagic–Vafa. 
    more » « less
  3. abstract: In this manuscript we study braid varieties, a class of affine algebraic varieties associated to positive braids. Several geometric constructions are presented, including certain torus actions on braid varieties and holomorphic symplectic structures on their respective quotients. We also develop a diagrammatic calculus for correspondences between braid varieties and use these correspondences to obtain interesting decompositions of braid varieties and their quotients. It is shown that the maximal charts of these decompositions are exponential Darboux charts for the holomorphic symplectic structures, and we relate these charts to exact Lagrangian fillings of Legendrian links. 
    more » « less
  4. We use exact Lagrangian fillings and Weinstein handlebody diagrams to construct infinitely many distinct exact Lagrangian tori in 4-dimensional Milnor fibers of isolated hypersurface singularities with positive modality. We also provide a generalization of a criterion for when the symplectic homology of a Weinstein 4-manifold is nonvanishing given an explicit Weinstein handlebody diagram. 
    more » « less
  5. We give a classification of Legendrian torus links. Along the way, we give the first classification of infinite families of Legendrian links where some smooth symmetries of the link cannot be realized by Legendrian isotopies. We also give the first family of links that are non-destabilizable but do not have maximal \tb invariant and observe a curious distribution of Legendrian torus knots that can be realized as the components of a Legendrian torus link. This classification of Legendrian torus links leads to a classification of transversal torus links. We also give a classification of Legendrian and transversal cable links of knot types that are uniformly thick and Legendrian simple. Here we see some similarities with the classification of Legendrian torus links, but also some differences. In particular, we show that there are Legendrian representatives of cable links of any uniformly thick knot type for which no symmetries of the components can be realized by a Legendrian isotopy, others where only cyclic permutations of the components can be realized, and yet others where all smooth symmetries are realizable. 
    more » « less