skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detecting gravitational lensing in hierarchical triples in galactic nuclei with space-borne gravitational-wave observatories
Award ID(s):
2011968 2011961
PAR ID:
10343057
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Review D
Volume:
104
Issue:
10
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> In four-dimensional asymptotically flat spacetimes, an infinite tower of soft graviton modes is known to generate the symmetry algebra of w1+∞ at tree-level. Here we demonstrate that the symmetry action follows from soft graviton theorems and acts non-trivially on massive scalar particles. By generalizing previous analyses that were specifically tailored to the scattering of massless particles, our results clarify that w1+∞ symmetry is a universal feature of tree-level gravitational scattering in four-dimensional asymptotically flat spacetimes and originates from minimally-coupled gravitational interactions. In addition, we show that the w1+∞ symmetry acts non-diagonally on massive states by mixing an infinite number of conformal families. We also present a concrete example of non-local behavior on the celestial sphere in the presence of massive scattering states. 
    more » « less
  2. null (Ed.)
    A bstract We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature — minimal and non-minimal — produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4- dimensional Poincaré AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic coupling. 
    more » « less