skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental Progress Towards Testing the Behavior of Gravity at the 20-micron Distance Scale
Due to discrepancies between the Standard Model and General Relativity, questions have arisen about the fundamental behavior of gravity. Many theories have speculated that gravity behaves fundamentally different at short ranges with respect to the predictions of Newtonian theory. These discrepancies have led the Humboldt State Gravitational Research Lab to begin constructing an experiment that will test the behavior of gravity at distances that have yet to be explored. The experiment has been improved upon in many aspects and has entered an initial data acquisition phase.  more » « less
Award ID(s):
1065697 1306783 1606988
PAR ID:
10343083
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Rykhus, R.; Brown, K.
Date Published:
Journal Name:
Journal of undergraduate research and scholarly excellence
Volume:
IX
ISSN:
2156-5309
Page Range / eLocation ID:
23-29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Earth's surface topography/bathymetry and gravity fields provide important constraints on crustal structure and the tectonic processes that act on it due, for example, to plate flexure and mantle convection. Such studies require, however, high accuracy measurements at a wide range of spatial scales. During the past few decades much progress has been made in the acquisition of bathymetry and gravity data using both shipboard and satellite altimeter methods. Surprisingly, there have been few comparisons of these data. During April–June, 2019 we had the opportunity onboard a R/VMarcus G. Langsethcruise in the northwest Pacific Ocean to compare data acquired with an EM122 Kongsberg swath bathymetry system and a refurbished Bell Aerospace BGM‐3 gravimeter with the most recent global bathymetry and gravity fields. We find that while the recovery of bathymetry and gravity from satellite radar altimeter data in areas of sparse shipboard data has been impressive, root mean square discrepancies in the range 175.5–303.4 m and 2.6–6.3 mGal exist between shipboard and satellite‐derived data. While these discrepancies are small, they are highly correlated and therefore have implications for the density structure, rock type and geological processes occurring on the deep seafloor. Shipboard data should continue to be acquired, especially over features such as seamounts, banks, and ridges that are associated with short wavelength (<25 km wavelength) bathymetric and gravimetric features beyond that is recoverable in satellite‐derived data. 
    more » « less
  2. Abstract Einstein’s general theory of relativity from 19151remains the most successful description of gravitation. From the 1919 solar eclipse2to the observation of gravitational waves3, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac’s theory4appeared in 1928; the positron was observed5in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted6by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7–10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive ‘antigravity’ is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP. 
    more » « less
  3. Theoretical and numerical models of active Janus particles commonly assume that the metallo-dielectric interface is parallel to the driving applied electric field. However, our experimental observations indicate that the equilibrium angle of orientation of electrokinetically driven Janus particles varies as a function of the frequency and voltage of the applied electric field. Here, we quantify the variation of the orientation with respect to the electric field and demonstrate that the equilibrium position represents the interplay between gravitational, electrostatic and electrohydrodynamic torques. The latter two categories are functions of the applied field (frequency, voltage) as well as the height of the particle above the substrate. Maximum departure from the alignment with the electric field occurs at low frequencies characteristic of induced-charge electrophoresis and at low voltages where gravity dominates the electrostatic and electrohydrodynamic torques. The departure of the interface from alignment with the electric field is shown to decrease particle mobility through comparison of freely suspended Janus particles subject only to electrical forcing and magnetized Janus particles in which magnetic torque is used to align the interface with the electric field. Consideration of the role of gravitational torque and particle–wall interactions could account for some discrepancies between theory, numerics and experiment in active matter systems. 
    more » « less
  4. This study explores the Faraday instability as a mechanism to enhance heat transfer in two-phase systems by exciting interfacial waves through resonance. The approach is particularly applicable to reduced-gravity environments where buoyancy-driven convection is ineffective. A reduced-order model, based on a weighted residual integral boundary layer method, is used to predict interfacial dynamics and heat flux under vertical oscillations with a stabilising thermal gradient. The model employs long-wave and one-way coupling approximations to simplify the governing equations. Linear stability theory informs the oscillation parameters for subsequent nonlinear simulations, which are then qualitatively compared against experiments conducted under Earth’s gravity. Experimental results show up to a 4.5-fold enhancement in heat transfer over pure conduction. Key findings include: (i) reduced gravity lowers interfacial stability, promoting mixing and heat transfer; and (ii) oscillation-induced instability significantly improves heat transport under Earth’s gravity. Theoretical predictions qualitatively validate experimental trends in wavelength-dependent enhancement of heat transfer. Quantitative discrepancies between model and experiment are rationalised by model assumptions, such as neglecting higher-order inertial terms, idealised boundary conditions, and simplified interface dynamics. These limitations lead to underprediction of interface deflection and heat flux. Nevertheless, the study underscores the value of Faraday instability as a means to boost heat transfer in reduced gravity, with implications for thermal management in space applications. 
    more » « less
  5. Abstract The COVID-19 pandemic and the resulting economic recession negatively affected many people’s physical, social, and psychological health and has been shown to change population-level mobility, but little attention has been given to park visitations as an indicator. Estimating the frequency of park visitations from aggregated mobility data of all the parks in Washington State (USA), we study trends in park use one year prior to and two years during the COVID-19 pandemic. Our findings indicate that the gravity model is a robust model for the park visitation behavior in different spatial resolutions of city level and state level and different socio-economical classes. Incorporating network structure, our detailed analysis highlights that high-income level residents changed their recreational behavior by visiting their local parks more and a broader recreational options outside of their local census area; whereas the low-income residents changed their visitation behavior by reducing their recreational choices. 
    more » « less