skip to main content


Title: Experimental Progress Towards Testing the Behavior of Gravity at the 20-micron Distance Scale
Due to discrepancies between the Standard Model and General Relativity, questions have arisen about the fundamental behavior of gravity. Many theories have speculated that gravity behaves fundamentally different at short ranges with respect to the predictions of Newtonian theory. These discrepancies have led the Humboldt State Gravitational Research Lab to begin constructing an experiment that will test the behavior of gravity at distances that have yet to be explored. The experiment has been improved upon in many aspects and has entered an initial data acquisition phase.  more » « less
Award ID(s):
1065697 1306783 1606988
NSF-PAR ID:
10343083
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Rykhus, R.; Brown, K.
Date Published:
Journal Name:
Journal of undergraduate research and scholarly excellence
Volume:
IX
ISSN:
2156-5309
Page Range / eLocation ID:
23-29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Earth's surface topography/bathymetry and gravity fields provide important constraints on crustal structure and the tectonic processes that act on it due, for example, to plate flexure and mantle convection. Such studies require, however, high accuracy measurements at a wide range of spatial scales. During the past few decades much progress has been made in the acquisition of bathymetry and gravity data using both shipboard and satellite altimeter methods. Surprisingly, there have been few comparisons of these data. During April–June, 2019 we had the opportunity onboard a R/VMarcus G. Langsethcruise in the northwest Pacific Ocean to compare data acquired with an EM122 Kongsberg swath bathymetry system and a refurbished Bell Aerospace BGM‐3 gravimeter with the most recent global bathymetry and gravity fields. We find that while the recovery of bathymetry and gravity from satellite radar altimeter data in areas of sparse shipboard data has been impressive, root mean square discrepancies in the range 175.5–303.4 m and 2.6–6.3 mGal exist between shipboard and satellite‐derived data. While these discrepancies are small, they are highly correlated and therefore have implications for the density structure, rock type and geological processes occurring on the deep seafloor. Shipboard data should continue to be acquired, especially over features such as seamounts, banks, and ridges that are associated with short wavelength (<25 km wavelength) bathymetric and gravimetric features beyond that is recoverable in satellite‐derived data.

     
    more » « less
  2. BACKGROUND The past decade has witnessed considerable progress toward the creation of new quantum technologies. Substantial advances in present leading qubit technologies, which are based on superconductors, semiconductors, trapped ions, or neutral atoms, will undoubtedly be made in the years ahead. Beyond these present technologies, there exist blueprints for topological qubits, which leverage fundamentally different physics for improved qubit performance. These qubits exploit the fact that quasiparticles of topological quantum states allow quantum information to be encoded and processed in a nonlocal manner, providing inherent protection against decoherence and potentially overcoming a major challenge of the present generation of qubits. Although still far from being experimentally realized, the potential benefits of this approach are evident. The inherent protection against decoherence implies better scalability, promising a considerable reduction in the number of qubits needed for error correction. Transcending possible technological applications, the underlying physics is rife with exciting concepts and challenges, including topological superconductors, non-abelian anyons such as Majorana zero modes (MZMs), and non-abelian quantum statistics.­­ ADVANCES In a wide-ranging and ongoing effort, numerous potential material platforms are being explored that may realize the required topological quantum states. Non-abelian anyons were first predicted as quasiparticles of topological states known as fractional quantum Hall states, which are formed when electrons move in a plane subject to a strong perpendicular magnetic field. The prediction that hybrid materials that combine topological insulators and conventional superconductors can support localized MZMs, the simplest type of non-abelian anyon, brought entirely new material platforms into view. These include, among others, semiconductor-superconductor hybrids, magnetic adatoms on superconducting substrates, and Fe-based superconductors. One-dimensional systems are playing a particularly prominent role, with blueprints for quantum information applications being most developed for hybrid semiconductor-superconductor systems. There have been numerous attempts to observe non-abelian anyons in the laboratory. Several experimental efforts observed signatures that are consistent with some of the theoretical predictions for MZMs. A few extensively studied platforms were subjected to intense scrutiny and in-depth analyses of alternative interpretations, revealing a more complex reality than anticipated, with multiple possible interpretations of the data. Because advances in our understanding of a physical system often rely on discrepancies between experiment and theory, this has already led to an improved understanding of Majorana signatures; however, our ability to detect and manipulate non-abelian anyons such as MZMs remains in its infancy. Future work can build on improved materials in some of the existing platforms but may also exploit new materials such as van der Waals heterostructures, including twisted layers, which promise many new options for engineering topological phases of matter. OUTLOOK Experimentally establishing the existence of non-abelian anyons constitutes an outstandingly worthwhile goal, not only from the point of view of fundamental physics but also because of their potential applications. Future progress will be accelerated if claims of Majorana discoveries are based on experimental tests that go substantially beyond indicators such as zero-bias peaks that, at best, suggest consistency with a Majorana interpretation. It will be equally important that these discoveries build on an excellent understanding of the underlying material systems. Most likely, further material improvements of existing platforms and the exploration of new material platforms will both be important avenues for progress toward obtaining solid evidence for MZMs. Once that has been achieved, we can hope to explore—and harness—the fascinating physics of non-abelian anyons such as the topologically protected ground state manifold and non-abelian statistics. Proposed topological platforms. (Left) Proposed state of electrons in a high magnetic field (even-denominator fractional quantum Hall states) are predicted to host Majorana quasiparticles. (Right) Hybrid structures of superconductors and other materials have also been proposed to host such quasiparticles and can be tailored to create topological quantum bits based on Majoranas. 
    more » « less
  3. Abstract

    Einstein’s general theory of relativity from 19151remains the most successful description of gravitation. From the 1919 solar eclipse2to the observation of gravitational waves3, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac’s theory4appeared in 1928; the positron was observed5in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted6by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7–10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive ‘antigravity’ is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP.

     
    more » « less
  4. Abstract

    Submarine melting has been implicated in the accelerated retreat of marine‐terminating glaciers globally. Energetic ocean flows, such as subglacial discharge plumes, are known to enhance submarine melting in their immediate vicinity. Using observations and a large eddy simulation, we demonstrate that discharge plumes emit high‐frequency internal gravity waves that propagate along glacier termini and transfer energy to distant regions of the terminus. Our analysis of wave characteristics and their correlation with subglacial discharge forcing suggest that they derive their energy from turbulent motions within the discharge plume and its surface outflow. Accounting for the near‐terminus velocities associated with these waves increases predicted melt rates by up to 70%. This may help to explain known discrepancies between observed melt rates and theoretical predictions. Because the dynamical ingredients—a buoyant plume rising through a stratified ocean—are common to many tidewater glacier systems, such internal waves are likely to be widespread.

     
    more » « less
  5. Abstract The surfaces of many planetary bodies, including asteroids and small moons, are covered with dust to pebble-sized regolith held weakly to the surface by gravity and contact forces. Understanding the reaction of regolith to an external perturbation will allow for instruments, including sensors and anchoring mechanisms for use on such surfaces, to implement optimized design principles. We analyze the behavior of a flexible probe inserted into loose regolith simulant as a function of probe speed and ambient gravitational acceleration to explore the relevant dynamics. The EMPANADA experiment (Ejecta-Minimizing Protocols for Applications Needing Anchoring or Digging on Asteroids) flew on several parabolic flights. It employs a classic granular physics technique, photoelasticity, to quantify the dynamics of a flexible probe during its insertion into a system of bi-disperse, centimeter-sized model grains. We identify the force chain structure throughout the system during probe insertion at a variety of speeds and for four different levels of gravity: terrestrial, Martian, lunar, and microgravity. We identify discrete, stick-slip failure events that increase in frequency as a function of the gravitational acceleration. In microgravity environments, stick-slip behaviors are negligible, and we find that faster probe insertion can suppress stick-slip behaviors where they are present. We conclude that the mechanical response of regolith on rubble-pile asteroids is likely quite distinct from that found on larger planetary objects, and scaling terrestrial experiments to microgravity conditions may not capture the full physical dynamics. 
    more » « less