skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coating-Based Quartz Crystal Microbalance Detection Methods of Environmentally Relevant Volatile Organic Compounds
Volatile organic compounds (VOCs) that evaporate under standard atmospheric conditions are of growing concern. This is because it is well established that VOCs represent major contamination risks since release of these compounds into the atmosphere can contribute to global warming, and thus, can also be detrimental to the overall health of worldwide populations including plants, animals, and humans. Consequently, the detection, discrimination, and quantification of VOCs have become highly relevant areas of research over the past few decades. One method that has been and continues to be creatively developed for analyses of VOCs is the Quartz Crystal Microbalance (QCM). In this review, we summarize and analyze applications of QCM devices for the development of sensor arrays aimed at the detection of environmentally relevant VOCs. Herein, we also summarize applications of a variety of coatings, e.g., polymers, macrocycles, and ionic liquids that have been used and reported in the literature for surface modification in order to enhance sensing and selective detection of VOCs using quartz crystal resonators (QCRs) and thus QCM. In this review, we also summarize novel electronic systems that have been developed for improved QCM measurements.  more » « less
Award ID(s):
1905105
PAR ID:
10343093
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemosensors
Volume:
9
Issue:
7
ISSN:
2227-9040
Page Range / eLocation ID:
153
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The quartz crystal microbalance (QCM) has been widely used in laboratory settings as an analytical tool for recognizing and discriminating biological and chemical molecules of interest. As a result, recent studies have shown there to be considerable attention in practical applications of the QCM technique beyond the laboratory. However, most commercial QCM instruments are not suitable for off-laboratory usage. For field-deployable applications and in situ detection, the development of a portable QCM measurement system achieving comparable performance to benchtop instruments is highly desired. In this paper, we describe the development of a fully customizable, miniaturized, battery-powered, and cost-efficient QCM system employing a phase-locked loop (PLL) electronic circuit-based QCM measurement system. The performance of this developed system showed a minimum frequency resolution of approximately 0.22 Hz at 0.1 s measurement time. This novel, miniaturized system successfully demonstrated an ability to detect two common volatile organic compounds (VOCs), methanol and dichloromethane (DCM), and the obtained results were comparable to responses from a commercially available benchtop instrument. 
    more » « less
  2. The most common bulk acoustic wave device used in biosensing applications is the quartz crystal microbalance (QCM), in which a resonant pure shear acoustic wave is excited via electrodes on both major faces of a thin AT-cut quartz plate. For biosensing, the QCM is used to detect the capture of a target by a target-capture film. The sensitivity of the QCM is typically based solely on the detection of mechanical property changes, as electrical property change detection is limited by the electrode on its sensing surface. A modification of the QCM called the lateral field excited (LFE) QCM (LFE-QCM) has been developed with a bare sensing surface as both electrodes are now on a single face of the quartz plate. Compared to the QCM, the LFE-QCM exhibits significantly higher sensitivity to both electrical and mechanical property changes. This paper presents theoretical and experimental aspects of LFE-QCMs. In particular, the presence and strength of the usual and newfound LFE-QCM modes depend on the electrical properties of the film and/or sensing environment. This work also presents examples of experimental setups for measuring the response of an LFE-QCM, followed by results of LFE-QCMs used to detect liquid electrical and mechanical properties, chemical targets, and biological targets. Finally, details are given about the attachment of various target-capture films to the LFE-QCM surface to capture biomarkers associated with diseases such as cancer. 
    more » « less
  3. Sensing films based on polymer–plasticizer coatings have been developed to detect volatile organic compounds (VOCs) in the atmosphere at low concentrations (ppm) using quartz crystal microbalances (QCMs). Of particular interest in this work are the VOCs benzene, ethylbenzene, and toluene which, along with xylene, are collectively referred to as BTEX. The combinations of four glassy polymers with five plasticizers were studied as prospective sensor films for this application, with PEMA-DINCH (5%) and PEMA-DIOA (5%) demonstrating optimal performance. This work shows how the sensitivity and selectivity of a glassy polymer film for BTEX detection can be altered by adding a precise amount and type of plasticizer. To quantify the film saturation dynamics and model the absorption of BTEX analyte molecules into the bulk of the sensing film, a diffusion study was performed in which the frequency–time curve obtained via QCM was correlated with gas-phase analyte composition and the infinite dilution partition coefficients of each constituent. The model was able to quantify the respective concentrations of each analyte from binary and ternary mixtures based on the difference in response time (τ) values using a single polymer–plasticizer film as opposed to the traditional approach of using a sensor array. This work presents a set of polymer–plasticizer coatings that can be used for detecting and quantifying the BTEX in air, and discusses the selection of an optimum film based on τ, infinite dilution partition coefficients, and stability over a period of time. 
    more » « less
  4. Herein, we examine two sensing schemes for detection and discrimination of chlorinated volatile organic compounds (VOCs). In this work, phosphonium ionic liquids (ILs) were synthesized and vapor sensing properties examined and compared to phosphonium IL-polymer composites. Pure IL sensors were used to develop a QCM-based multisensory array (MSA), while IL-polymer composites were used to develop an MSA and virtual sensor arrays (VSAs). It was found that by employing the composite MSA, five chlorinated VOCs were accurately discriminated at 95.56%, which was an increase in accuracy as compared to pure ILs MSA (84.45%). Data acquired with two out of three VSAs allowed discrimination of chlorinated VOCs with 100% accuracy. These studies have provided greater insight into the benefits of incorporating polymers in coating materials for enhanced discrimination accuracies of QCM-based sensor arrays. To the best of our knowledge, this is the first report of a QCM-based VSA for discrimination of closely related chlorinated VOCs. 
    more » « less
  5. Abstract Viscosity measurement has recently captured considerable attention due to its wide range of applications in fields such as pharmacy, food industry, cosmetic industry, and biomedical diagnostics. Acoustic wave sensors such as quartz crystal microbalance (QCM) are well-known mass sensors that also show their capability in measuring liquid viscosity. However, the challenges for QCM-based viscosity measurement devices lie in their low sensitivity and unstable response. Herein, we report an ultrasensitive micropillar-enabled acoustic wave (μPAW) viscometer by fabricating well-defined polymethyl methacrylate (PMMA) micropillars on a QCM substrate to achieve ultrahigh sensitivity for liquid viscosity with a stable response thanks to a unique vibration coupling between the micropillar and QCM substrate. The μPAW based viscometer shows a 20-fold improvement in the measurement sensitivity over traditional QCM viscometers and achieved an excellent limit of detection (LOD) while measuring the viscosity of sucrose liquid as low as 0.054 wt%. The microdevice developed in this work is a promising tool for the viscosity measurement of liquids. 
    more » « less