skip to main content


Title: Three-loop soft anomalous dimensions in QCD
I present results for soft anomalous dimensions through three loops for many QCD processes. In particular, I give detailed expressions for soft anomalous dimensions in various processes with electroweak and Higgs bosons as well as single top quarks and top-antitop pairs.  more » « less
Award ID(s):
2112025
NSF-PAR ID:
10343123
Author(s) / Creator(s):
Date Published:
Journal Name:
SciPost physics proceedings
Volume:
7
ISSN:
2666-4003
Page Range / eLocation ID:
046.1-046.9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    I discuss and review soft anomalous dimensions in QCD that describe soft-gluon threshold resummation for a wide range of hard-scattering processes. The factorization properties of the cross section in moment space and renormalization-group evolution are implemented to derive a general form for differential resummed cross sections. Detailed expressions are given for the soft anomalous dimensions at one, two, and three loops, including some new results, for a large number of partonic processes involving top quarks, electroweak bosons, Higgs bosons, and other particles in the standard model and beyond. 
    more » « less
  2. I discuss recent theoretical results with soft-gluon corrections for various top-quark production processes through approximate N3LO, including soft anomalous dimensions through three loops. I present numerical results for total cross sections and differential distributions for top-pair and tW production as well as for three-particle final states with a top quark and a Higgs boson. I show that soft-gluon corrections are dominant for a large range of collider energies. 
    more » « less
  3. Abstract

    Bedforms of Thwaites Glacier, West Antarctica both record and affect ice flow, as shown by geophysical data and simple models. Thwaites Glacier flows across the tectonic fabric of the West Antarctic rift system with its bedrock highs and sedimentary basins. Swath radar and seismic surveys of the glacier bed have revealed soft‐sediment flutes 100 m or more high extending 15 km or more across basins downglacier from bedrock highs. Flutes end at prominent hard‐bedded moats on stoss sides of the next topographic highs. We use simple models to show that ice flow against topography increases pressure between ice and till upglacier along the bed over a distance that scales with the topography. In this basal zone of high pressure, ice‐contact water would be excluded, thus increasing basal drag by increasing ice‐till coupling and till flux, removing till to allow bedrock erosion that creates moats. Till carried across highlands would then be deposited in lee‐side positions forming bedforms that prograde downglacier over time, and that remain soft on top through feedbacks that match till‐deformational fluxes from well upglacier of the topography. The bedforms of the part of Thwaites surveyed here are prominent because ice flow has persisted over a long time on this geological setting, not because ice flow is anomalous. Bedform development likely has caused evolution of ice flow over time as till and lubricating water were redistributed, moats were eroded and bedforms grew.

     
    more » « less
  4. Intraseasonal modes of atmospheric variability over the Northern Hemisphere (NH) midlatitudes in boreal summer are identified via an empirical orthogonal function (EOF) analysis of the daily 10–90-day bandpass-filtered 250-hPa streamfunction for the period of 1950–2016. The first two EOF modes are characterized, respectively, by (i) a single-signed streamfunction anomaly that extends across the NH and (ii) a regional dipole structure with centers over the Aleutian Islands and northeastern Pacific. The third EOF mode (EOF-3) is a quasi-stationary wave train over the Pacific–North American sector with an equivalent barotropic structure in the vertical. EOF-3 is associated with a northwest–southeast oriented anomalous precipitation dipole over the United States. A nonmodal instability analysis of the boreal summer climatological flow in terms of the 250-hPa streamfunction reveals that one of the top “optimal mode” disturbances mimicking the EOF-3 structure grows from an initial precursor disturbance over East Asia through extracting kinetic energy from background flow and attains its maximum amplitude in around nine days. An additional lag regression analysis illustrates that anomalous latent heating associated with cloud and precipitation formation over East Asia is responsible for generating the precursor disturbance for the EOF-3-like optimal mode. This result suggests the existence of an important connection between the hydrological cycles of East Asia and North America, which is dynamically intrinsic to the boreal summer upper-tropospheric flow. Knowledge of such a connection will help us better understand and model hydroclimate variability over these two continents.

     
    more » « less
  5. I present theoretical calculations for Higgs-boson and top-quark production, including high-order soft-gluon corrections. I discuss charged-Higgs production in association with a top quark or a W boson, as well as single-top and top-antitop production. Total cross sections as well as transverse-momentum and rapidity distributions of the top quark or the Higgs boson are presented for various LHC energies. 
    more » « less