skip to main content


Title: Photon Ring Symmetries in Simulated Linear Polarization Images of Messier 87*
Abstract

The Event Horizon Telescope (EHT) recently released the first linearly polarized images of the accretion flow around the supermassive black hole Messier 87*, hereafter M87*. The spiraling polarization pattern found in the EHT images favored magnetically arrested disks as the explanation for the EHT image. With next-generation improvements to very long baseline interferometry on the horizon, understanding similar polarized features in the highly lensed structure known as the “photon ring,” where photons make multiple half orbits about the black hole before reaching the observer, will be critical to the analysis of future images. Recent work has indicated that this image region may be depolarized relative to more direct emission. We expand this observation by decomposing photon half orbits in the EHT library of simulated images of the M 87* accretion system and find that images of magnetically arrested disk simulations show a relative depolarization of the photon ring attributable to destructive interference of oppositely spiraling electric field vectors; this antisymmetry, which arises purely from strong gravitational lensing, can produce up to ∼50% depolarization in the photon ring region with respect to the direct image. In systems that are not magnetically arrested and with the exception of systems with high spin and ions and electrons of equal temperature, we find that highly lensed indirect subimages are almost completely depolarized, causing a modest depolarization of the photon ring region in the complete image. We predict that next-generation EHT observations of M 87* polarization should jointly constrain the black hole spin and the underlying emission and magnetic field geometry.

 
more » « less
Award ID(s):
1935980 2034306
NSF-PAR ID:
10366336
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
929
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 49
Size(s):
["Article No. 49"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Event Horizon Telescope (EHT) has produced images of two supermassive black holes, Messier 87* (M 87*) and Sagittarius A* (Sgr A*). The EHT collaboration used these images to indirectly constrain black hole parameters by calibrating measurements of the sky-plane emission morphology to images of general relativistic magnetohydrodynamic (GRMHD) simulations. Here, we develop a model for directly constraining the black hole mass, spin, and inclination through signatures of lensing, redshift, and frame dragging, while simultaneously marginalizing over the unknown accretion and emission properties. By assuming optically thin, axisymmetric, equatorial emission near the black hole, our model gains orders of magnitude in speed over similar approaches that require radiative transfer. Using 2017 EHT M 87* baseline coverage, we use fits of the model to itself to show that the data are insufficient to demonstrate existence of the photon ring. We then survey time-averaged GRMHD simulations fitting EHT-like data, and find that our model is best-suited to fitting magnetically arrested disks, which are the favored class of simulations for both M 87* and Sgr A*. For these simulations, the best-fit model parameters are within ∼10% of the true mass and within ∼10° for inclination. With 2017 EHT coverage and 1% fractional uncertainty on amplitudes, spin is unconstrained. Accurate inference of spin axis position angle depends strongly on spin and electron temperature. Our results show the promise of directly constraining black hole spacetimes with interferometric data, but they also show that nearly identical images permit large differences in black hole properties, highlighting degeneracies between the plasma properties, spacetime, and, most crucially, the unknown emission geometry when studying lensed accretion flow images at a single frequency.

     
    more » « less
  2. Abstract

    Images of supermassive black hole accretion flows contain features of both curved spacetime and plasma structure. Inferring properties of the spacetime from images requires modeling the plasma properties, and vice versa. The Event Horizon Telescope Collaboration has imaged near-horizon millimeter emission from both Messier 87* (M87*) and Sagittarius A* (Sgr A*) with very long baseline interferometry (VLBI) and has found a preference for magnetically arrested disk (MAD) accretion in each case. MAD accretion enables spacetime measurements through future observations of the photon ring, the image feature composed of near-orbiting photons. The ordered fields and relatively weak Faraday rotation of MADs yield rotationally symmetric polarization when viewed at modest inclination. In this letter, we utilize this symmetry along with parallel transport symmetries to construct a gain-robust interferometric quantity that detects the transition between the weakly lensed accretion flow image and the strongly lensed photon ring. We predict a shift in polarimetric phases on long baselines and demonstrate that the photon rings in M87* and Sgr A* can be unambiguously detected with sensitive, long-baseline measurements. For M87*, we find that photon ring detection in snapshot observations requires ∼1 mJy sensitivity on >15 Gλbaselines at 230 GHz and above, which could be achieved with space-VLBI or higher-frequency ground-based VLBI. For Sgr A*, we find that interstellar scattering inhibits photon ring detectability at 230 GHz, but ∼10 mJy sensitivity on >12 Gλbaselines at 345 GHz is sufficient and is accessible from the ground. For both sources, these sensitivity requirements may be relaxed by repeated observations and averaging.

     
    more » « less
  3. Abstract

    Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈∣v∣〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (∣vint∣ < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*.

     
    more » « less
  4. ABSTRACT

    Horizon-scale observations of the jetted active galactic nucleus M87 are compared with simulations spanning a broad range of dissipation mechanisms and plasma content in three-dimensional general relativistic flows around spinning black holes. Observations of synchrotron radiation from radio to X-ray frequencies can be compared with simulations by adding prescriptions specifying the relativistic electron-plus-positron distribution function and associated radiative transfer coefficients. A suite of time-varying simulations with various spins, plasma magnetizations and turbulent heating and equipartition-based emission prescriptions (and piecewise combinations thereof) is chosen to represent distinct possibilities for the M87 jet/accretion flow/black hole system. Simulation jet morphology, polarization, and variation are then ‘observed’ and compared with real observations to infer the rules that govern the polarized emissivity. Our models support several possible spin/emission model/plasma composition combinations supplying the jet in M87, whose black hole shadow has been observed down to the photon ring at 230 GHz by the Event Horizon Telescope (EHT). Net linear polarization and circular polarization constraints favour magnetically arrested disc (MAD) models whereas resolved linear polarization favours standard and normal evolution (SANE) in our parameter space. We also show that some MAD cases dominated by intrinsic circular polarization have near-linear V/I dependence on un-paired electron or positron content while SANE polarization exhibits markedly greater positron-dependent Faraday effects – future probes of the SANE/MAD dichotomy and plasma content with the EHT. This is the second work in a series also applying the ‘observing’ simulations methodology to near-horizon regions of supermassive black holes in Sgr A* and 3C 279.

     
    more » « less
  5. General relativity predicts that images of optically thin accretion flows around black holes should generically have a “photon ring”, composed of a series of increasingly sharp subrings that correspond to increasingly strongly lensed emission near the black hole. Because the effects of lensing are determined by the spacetime curvature, the photon ring provides a pathway to precise measurements of the black hole properties and tests of the Kerr metric. We explore the prospects for detecting and measuring the photon ring using very long baseline interferometry (VLBI) with the Event Horizon Telescope (EHT) and the next-generation EHT (ngEHT). We present a series of tests using idealized self-fits to simple geometrical models and show that the EHT observations in 2017 and 2022 lack the angular resolution and sensitivity to detect the photon ring, while the improved coverage and angular resolution of ngEHT at 230 GHz and 345 GHz is sufficient for these models. We then analyze detection prospects using more realistic images from general relativistic magnetohydrodynamic simulations by applying “hybrid imaging”, which simultaneously models two components: a flexible raster image (to capture the direct emission) and a ring component. Using the Bayesian VLBI modeling package Comrade.jl, we show that the results of hybrid imaging must be interpreted with extreme caution for both photon ring detection and measurement—hybrid imaging readily produces false positives for a photon ring, and its ring measurements do not directly correspond to the properties of the photon ring. 
    more » « less