skip to main content


Title: Platinum( ii ) alkyl complexes of chelating dibridgehead diphosphines P((CH 2 ) n ) 3 P ( n = 14, 18, 22); facile cis / trans isomerizations interconverting gyroscope and parachute like adducts
The gyroscope like dichloride complexes trans -Pt(Cl) 2 (P((CH 2 ) n ) 3 P) ( trans -2; n = c, 14; e, 18; g, 22) and MeLi (2 equiv.) react to yield the parachute like dimethyl complexes cis -Pt(Me) 2 (P((CH 2 ) n ) 3 P) ( cis -4c,e,g, 70–91%). HCl (1 equiv.) and cis -4c react to give cis -Pt(Cl)(Me)(P((CH 2 ) 14 ) 3 P) ( cis -5c, 83%), which upon stirring with silica gel or crystallization affords trans -5c (89%). Similar reactions of HCl and cis -4e,g give cis / trans -5e,g mixtures that upon stirring with silica gel yield trans -5e,g. A parallel sequence with trans -2c/EtLi gives cis -Pt(Et) 2 (P((CH 2 ) 14 ) 3 P) ( cis -6c, 85%) but subsequent reaction with HCl affords trans -Pt(Cl)(Et)(P((CH 2 ) 14 ) 3 P) ( trans -7c, 45%) directly. When previously reported cis -Pt(Ph) 2 (P((CH 2 ) 14 ) 3 P) is treated with HCl (1 equiv.), cis - and trans -Pt(Cl)(Ph)(P((CH 2 ) 14 ) 3 P) are isolated (44%, 29%), with the former converting to the latter at 100 °C. Reactions of trans -5c and LiBr or NaI afford the halide complexes trans -Pt(X)(Me)(P((CH 2 ) 14 ) 3 P) ( trans -9c, 88%; trans -10c, 87%). Thermolyses and DFT calculations that include acyclic model compounds establish trans > cis stabilities for all except the dialkyl complexes, for which energies can be closely spaced. The σ donor strengths of the non-phosphine ligands are assigned key roles in the trends. The crystal structures of cis -4c, trans -5c, trans -7c, and trans -10c are determined and analyzed together with the computed structures.  more » « less
Award ID(s):
1900549
NSF-PAR ID:
10343447
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
50
Issue:
36
ISSN:
1477-9226
Page Range / eLocation ID:
12457 to 12477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=a, Me;b, Et;c,n‐Bu;d,n‐Dec;e, Bn;f,p‐tolCH2) are combined with (p‐tol3P)2PtCl2ortrans‐(p‐tol3P)2Pt((C≡C)2H)2to give the chelatescis‐(R2C(CH2PPh2)2)PtCl2(2 af, 94–69 %) orcis‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 af, 97–54 %). Complexes3 adare also available from2 adand excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2and3react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 af; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Clare challenging to remove. Crystal structures of4 a,bshow skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 afare similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally.

     
    more » « less
  2. Reaction of ( p -tol 3 P) 2 PtCl 2 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/THF/reflux) gives monosubstituted trans -Cl( p -tol 3 P) 2 Pt(CC) 2 SiMe 3 (63%), which with wet n -Bu 4 N + F − yields trans -Cl( p -tol 3 P) 2 Pt(CC) 2 H ( 2 , 96%). Hay oxidative homocoupling (O 2 /CuCl/TMEDA) gives all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 Cl ( 3 , 68%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/rt) affords monosubstituted all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (46%), which is converted by a similar desilylation/homocoupling sequence to all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 3 Pt(P p -tol 3 ) 2 Cl ( 7 ; 79%). Reaction of ( p -tol 3 P) 2 PtCl 2 and excess H(CC) 2 SiMe 3 (HNEt 2 /cat. CuI) gives trans -Me 3 Si(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (78%), which with wet n -Bu 4 N + F − affords trans -H(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Hay oxidative cross coupling with 2 (1 : 4) gives all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 2 Pt(P p -tol 3 ) 2 Cl ( 10 , 36%) along with homocoupling product 3 (33%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 2/rt) yields all- trans -Me 3 Si(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 ( 17 , 77%), which with wet n -Bu 4 N + F − gives all- trans -H(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Reaction of 3 and excess Me 3 P gives all- trans -Cl(Me 3 P) 2 Pt(CC) 4 Pt(PMe 3 ) 2 Cl ( 4 , 86%). A model reaction of trans -( p -tol)( p -tol 3 P) 2 PtCl and KSAc yields trans -( p -tol)( p -tol 3 P) 2 PtSAc ( 12 , 75%). Similar reactions of 3 , 7 , 10 , and 4 give all- trans -AcS[(R 3 P) 2 Pt(CC) 4 ] n Pt(PR 3 ) 2 SAc (76–91%). The crystal structures of 3 , 17 , and 12 are determined. The first exhibits a chlorine–chlorine distance of 17.42 Å; those in 10 and 7 are estimated as 30.3 Å and 43.1 Å. 
    more » « less
  3. Reactions of {(C 6 F 5 )Pt[S(CH 2 CH 2 -) 2 ](μ-Cl)} 2 and R 3 P yield the bis(phosphine) species trans -(C 6 F 5 )(R 3 P) 2 PtCl [R = Et ( Pt'Cl ), Ph, ( p -CF 3 C 6 H 4 ) 3 P; 88-81 %]. Additions of Pt'Cl and H(C≡C) n H ( n = 1, 2; HNEt 2 , 20 mol % CuI) give Pt'C 2 H (37 %, plus Pt'I , 16 %) and Pt'C 4 H (88 %). Homocoupling of Pt'C 4 H under Hay conditions (O 2 , CuCl, TMEDA, acetone) gives Pt'C 8 Pt' (85 %), but Pt'C 2 H affords only traces of Pt'C 4 Pt' . However, condensation of Pt'C 4 H and Pt'Cl (HNEt 2 , 20 mol % CuI) yields Pt'C 4 Pt' (97 %). Hay heterocouplings of Pt'C 4 H or trans -( p -tol)(Ph 3 P) 2 Pt(C≡C) 2 H ( Pt*C 4 H ) and excess HC≡CSiEt 3 give Pt'C 6 SiEt 3 (76 %) or Pt*C 6 SiEt 3 (89 %). The latter and wet n -Bu 4 N + F - react to yield labile Pt*C 6 H (60 %). Hay homocouplings of Pt*C 4 H and Pt*C 6 H give Pt*C 8 Pt* (64 %) and Pt*C 12 Pt* (64 %). Reaction of trans -(C 6 F 5 )( p -tol 3 P) 2 PtCl ( PtCl ) and HC≡CH (HNEt 2 , 20 mol % CuI) yields only traces of PtC 2 H . However, an analogous reaction with HC≡CSiMe 3 gives PtC 2 SiMe 3 (75 %), which upon treatment with silica yields PtC 2 H (77 %). An analogous coupling of trans -(C 6 F 5 )(Ph 3 P) 2 PtCl with H(C≡C) 2 H gives trans -(C 6 F 5 )(Ph 3 P) 2 Pt(C≡C) 2 H (34 %). Advantages and disadvantages of the various trans -(Ar)(R 3 P) 2 Pt end-groups are analyzed. 
    more » « less
  4. The diphosphine complexes cis - or trans -PtCl 2 (P((CH 2 ) n ) 3 P) ( n = b/12, c/14, d/16, e/18) are demetalated by MCX nucleophiles to give the title compounds (P((CH 2 ) n ) 3 )P (3b–e, 91–71%). These “empty cages” react with PdCl 2 or PtCl 2 sources to afford trans -MCl 2 (P((CH 2 ) n ) 3 P). Low temperature 31 P NMR spectra of 3b and c show two rapidly equilibrating species (3b, 86 : 14; 3c, 97 : 3), assigned based upon computational data to in , in (major) and out , out isomers. These interconvert by homeomorphic isomerizations, akin to turning articles of clothing inside out (3b/c: Δ H ‡ 7.3/8.2 kcal mol −1 , Δ S ‡ −19.4/−11.8 eu, minor to major). At 150 °C, 3b, c, e epimerize to (60–51) : (40–49) mixtures of ( in , in / out , out ) :  in , out isomers, which are separated via the bis(borane) adducts 3b, c, e·2BH 3 . The configurational stabilities of in , out -3b, c, e preclude phosphorus inversion in the interconversion of in , in and out , out isomers. Low temperature 31 P NMR spectra of in , out -3b, c reveal degenerate in , out / out , in homeomorphic isomerizations (Δ G ‡Tc 12.1, 8.5 kcal mol −1 ). When ( in , in / out , out )-3b, c, e are crystallized, out , out isomers are obtained, despite the preference for in , in isomers in solution. The lattice structures are analyzed, and the D 3 symmetry of out , out -3c enables a particularly favorable packing motif. Similarly, ( in , in / out , out )-3c, e·2BH 3 crystallize in out , out conformations, the former with a cycloalkane solvent guest inside. 
    more » « less
  5. Two routes to the title compounds are evaluated. First, a ca. 0.01 M CH 2 Cl 2 solution of H 3 B·P((CH 2 ) 6 CH=CH 2 ) 3 ( 1 ·BH 3 ) is treated with 5 mol % of Grubbs' first generation catalyst (0 °C to reflux), followed by H 2 (5 bar) and Wilkinson's catalyst (55 °C). Column chromatography affords H 3 B·P( n- C 8 H 17 ) 3 (1%), H 3 B· P ((CH 2 ) 13 C H 2 )( n -C 8 H 17 ) (8%; see text for tie bars that indicate additional phosphorus–carbon linkages, which are coded in the abstract with italics), H 3 B· P ((CH 2 ) 13 C H 2 )((CH 2 ) 14 ) P ((CH 2 ) 13 C H 2 )·BH 3 ( 6 ·2BH 3 , 10%), in,out -H 3 B·P((CH 2 ) 14 ) 3 P·BH 3 ( in,out - 2 ·2BH 3 , 4%) and the stereoisomer ( in,in / out,out )- 2 ·2BH 3 (2%). Four of these structures are verified by independent syntheses. Second, 1,14-tetradecanedioic acid is converted (reduction, bromination, Arbuzov reaction, LiAlH 4 ) to H 2 P((CH 2 ) 14 )PH 2 ( 10 ; 76% overall yield). The reaction with H 3 B·SMe 2 gives 10 ·2BH 3 , which is treated with n -BuLi (4.4 equiv) and Br(CH 2 ) 6 CH=CH 2 (4.0 equiv) to afford the tetraalkenyl precursor (H 2 C=CH(CH 2 ) 6 ) 2 (H 3 B)P((CH 2 ) 14 )P(BH 3 )((CH 2 ) 6 CH=CH 2 ) 2 ( 11 ·2BH 3 ; 18%). Alternative approaches to 11 ·2BH 3 (e.g., via 11 ) were unsuccessful. An analogous metathesis/hydrogenation/chromatography sequence with 11 ·2BH 3 (0.0010 M in CH 2 Cl 2 ) gives 6 ·2BH 3 (5%), in,out - 2 ·2BH 3 (6%), and ( in,in / out,out )- 2 ·2BH 3 (7%). Despite the doubled yield of 2 ·2BH 3 , the longer synthesis of 11 ·2BH 3 vs 1 ·BH 3 renders the two routes a toss-up; neither compares favorably with precious metal templated syntheses. 
    more » « less