skip to main content

Title: Virtual Big Heads: Analysis of Human Perception and Comfort of Head Scales in Social Virtual Reality
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
Page Range or eLocation-ID:
425 to 433
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we investigate the effects of the physical influence of a virtual human (VH) in the context of face-to-face interaction in augmented reality (AR). In our study, participants played a tabletop game with a VH, in which each player takes a turn and moves their own token along the designated spots on the shared table. We compared two conditions as follows: the VH in the virtual condition moves a virtual token that can only be seen through AR glasses, while the VH in the physical condition moves a physical token as the participants do; therefore the VH’s token can be seen even in the periphery of the AR glasses. For the physical condition, we designed an actuator system underneath the table. The actuator moves a magnet under the table which then moves the VH’s physical token over the surface of the table. Our results indicate that participants felt higher co-presence with the VH in the physical condition, and participants assessed the VH as a more physical entity compared to the VH in the virtual condition. We further observed transference effects when participants attributed the VH’s ability to move physical objects to other elements in the real world. Also,more »the VH’s physical influence improved participants’ overall experience with the VH. We discuss potential explanations for the findings and implications for future shared AR tabletop setups.« less
  2. With the increasing integration of renewable energy, the problems associated with deteriorating grid frequency profile and potential power system instability have become more significant. In this paper, the inertial control algorithm using Virtual Synchronous Generator (VSG) is implemented on type-4 Permanent Magnet Synchronous Generator (PMSG) - wind turbine generator (WTG). The overall nonlinear dynamic model and its small-signal linearization of PMSG-WTG using VSG is established and comprehensively analyzed. Inevitably, the direct application of VSG introduces large inertia which causes conflict between the fast-varying of available wind power and inverter control with slow dynamics, particularly in region 2 of wind turbine. Aiming to address such issue, VSG with multiple virtual rotating masses is proposed in order to improve the active power tracking performance as well as to boost inertial control of a VSG. The inertial responses are verified in a modified 10MVA IEEE 14 bus microgrid system. The assessment of the simulation results demonstrates the applicability of VSG on renewable energy generation units.
  3. In this work, we investigate the influence of different visualizations on a manipulation task in virtual reality (VR). Without the haptic feedback of the real world, grasping in VR might result in intersections with virtual objects. As people are highly sensitive when it comes to perceiving collisions, it might look more appealing to avoid intersections and visualize non-colliding hand motions. However, correcting the position of the hand or fingers results in a visual-proprioceptive discrepancy and must be used with caution. Furthermore, the lack of haptic feedback in the virtual world might result in slower actions as a user might not know exactly when a grasp has occurred. This reduced performance could be remediated with adequate visual feedback. In this study, we analyze the performance, level of ownership, and user preference of eight different visual feedback techniques for virtual grasping. Three techniques show the tracked hand (with or without grasping feedback), even if it intersects with the grasped object. Another three techniques display a hand without intersections with the object, called outer hand, simulating the look of a real world interaction. One visualization is a compromise between the two groups, showing both a primary outer hand and a secondary tracked hand.more »Finally, in the last visualization the hand disappears during the grasping activity. In an experiment, users perform a pick-and-place task for each feedback technique. We use high fidelity marker-based hand tracking to control the virtual hands in real time. We found that the tracked hand visualizations result in better performance, however, the outer hand visualizations were preferred. We also find indications that ownership is higher with the outer hand visualizations.« less