skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metalorganic chemical vapor deposition of α-Ga 2 O 3 and α-(Al x Ga 1−x ) 2 O 3 thin films on m-plane sapphire substrates
Award ID(s):
2019753
PAR ID:
10343506
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
APL Materials
Volume:
9
Issue:
10
ISSN:
2166-532X
Page Range / eLocation ID:
101109
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. X Ray Photoelectron Spectroscopy was used to measure valence band offsets for Al 2 O 3 deposited by Atomic Layer Deposition on α -(Al x Ga 1-x ) 2 O 3 alloys over a wide range of Al contents, x, from 0.26–0.74, corresponding to a bandgap range from 5.8–7 eV. These alloys were grown by Pulsed Laser Deposition. The band alignments were type I (nested) at x <0.5, with valence band offsets 0.13 eV for x = 0.26 and x = 0.46. At higher Al contents, the band alignment was a staggered alignment, with valence band offsets of − 0.07 eV for x = 0.58 and −0.17 for x = 0.74, ie. negative valence band offsets in both cases. The conduction band offsets are also small at these high Al contents, being only 0.07 eV at x = 0.74. The wide bandgap of the α -(Al x Ga 1-x ) 2 O 3 alloys makes it difficult to find dielectrics with nested band alignments over the entire composition range. 
    more » « less
  2. null (Ed.)
  3. Valence band offsets for SiO 2 deposited by Atomic Layer Deposition on α -(Al x Ga 1-x ) 2 O 3 alloys with x = 0.26–0.74 were measured by X-ray Photoelectron Spectroscopy. The samples were grown with a continuous composition spread to enable investigations of the band alignment as a function of the alloy composition. From measurement of the core levels in the alloys, the bandgaps were determined to range from 5.8 eV (x = 0.26) to 7 eV (x = 0.74). These are consistent with previous measurements by transmission spectroscopy. The valence band offsets of SiO 2 with these alloys of different composition were, respectively, were −1.2 eV for x = 0.26, −0.2 eV for x = 0.42, 0.2 eV for x = 0.58 and 0.4 eV for x = 0.74. All of these band offsets are too low for most device applications. Given the bandgap of the SiO 2 was 8.7 eV, this led to conduction band offsets of 4.1 eV (x = 0.26) to 1.3 eV (x = 0.74). The band alignments were of the desired nested configuration for x > 0.5, but at lower Al contents the conduction band offsets were negative, with a staggered band alignment. This shows the challenge of finding appropriate dielectrics for this ultra-wide bandgap semiconductor system. 
    more » « less
  4. Abstract We report the growth of α -Ga 2 O 3 on m -plane α -Al 2 O 3 by conventional plasma-assisted molecular-beam epitaxy and In-mediated metal–oxide-catalyzed epitaxy (MOCATAXY). We report a growth rate diagram for α -Ga 2 O 3 ( 10 1 ¯ 0 ), and observe (i) a growth rate increase, (ii) an expanded growth window, and (iii) reduced out-of-lane mosaic spread when MOCATAXY is employed for the growth of α -Ga 2 O 3 . Through the use of In-mediated catalysis, growth rates over 0.2 μ m h −1 and rocking curves with full width at half maxima of Δ ω ≈ 0.45° are achieved. Faceting is observed along the α -Ga 2 O 3 film surface and explored through scanning transmission electron microscopy. 
    more » « less