skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Formation and properties of biocompatible Ti-based bulk metallic glasses in the Ti–Cu–Zr–Fe–Sn–Si–Ag system
Award ID(s):
1809640
PAR ID:
10343613
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Non-Crystalline Solids
Volume:
571
Issue:
C
ISSN:
0022-3093
Page Range / eLocation ID:
121060
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, a Ni-alloy Deloro-22 was laser-deposited on a Ti–6Al–4V bar substrate with multiple sets of laser processing parameters. The purpose was to apply laser surface modification to synthesize different combinations of ductile TiNi and hard Ti2Ni intermetallic phases on the surface of Ti–6Al–4V in order to obtain adjustable surface properties. Scanning electron microscopy, energy dispersion spectroscopy, and X-ray diffraction were applied to reveal the deposited surface microstructure and phase. The effect of processing parameters on the resultant compositions of TiNi and Ti2Ni was discussed. The hardness of the deposition was evaluated, and comparisons with the Ti–6Al–4V bulk part were carried out. They showed a significant improvement in surface hardness on Ti–6Al–4V alloys after laser processing, and the hardness could be flexibly adjusted by using this laser-assisted surface modification technique. 
    more » « less
  2. MAX phase foams could have various applications where tailored functional and mechanical properties are required. In this study, Ti2AlC and Ti3SiC2 MAX phase foams with controlled porosity and pore size were produced and characterized. The foams were produced from MAX phase powders by powder metallurgy method using crystalline carbohydrate as a space holder. Foams with overall porosity up to approximately 71 vol% and pore size from 250 μm to 1000 μm were successfully produced; micro-porosity and macro-porosity was characterized. Poisson's ratio and elastic moduli of the foams were measured by resonant ultrasound spectroscopy (RUS) and analyzed as a function of porosity and pore size. Different models were used to fit the experimental data and interpret the effect of pore size and amount of porosity and on elastic properties. It was found that the amount and type of porosity has a larger influence on the elastic properties than the pore size. 
    more » « less