Formation and properties of biocompatible Ti-based bulk metallic glasses in the Ti–Cu–Zr–Fe–Sn–Si–Ag system
- Award ID(s):
- 1809640
- PAR ID:
- 10343613
- Date Published:
- Journal Name:
- Journal of Non-Crystalline Solids
- Volume:
- 571
- Issue:
- C
- ISSN:
- 0022-3093
- Page Range / eLocation ID:
- 121060
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this work, a Ni-alloy Deloro-22 was laser-deposited on a Ti–6Al–4V bar substrate with multiple sets of laser processing parameters. The purpose was to apply laser surface modification to synthesize different combinations of ductile TiNi and hard Ti2Ni intermetallic phases on the surface of Ti–6Al–4V in order to obtain adjustable surface properties. Scanning electron microscopy, energy dispersion spectroscopy, and X-ray diffraction were applied to reveal the deposited surface microstructure and phase. The effect of processing parameters on the resultant compositions of TiNi and Ti2Ni was discussed. The hardness of the deposition was evaluated, and comparisons with the Ti–6Al–4V bulk part were carried out. They showed a significant improvement in surface hardness on Ti–6Al–4V alloys after laser processing, and the hardness could be flexibly adjusted by using this laser-assisted surface modification technique.more » « less
-
Extensive research has been conducted on Ti–Fe–Sn ultrafine eutectic composites due to their high yield strength, compared to conventional microcrystalline alloys. The unique microstructure of ultrafine eutectic composites, which consists of the ultrafine-grained lamella matrix with the formation of primary dendrites, leads to high strength and desirable plasticity. A lamellar structure is known for its high strength with limited plasticity, owing to its interface-strengthening effect. Thus, extensive efforts have been conducted to induce the lamellar structure and control the volume fraction of primary dendrites to enhance plasticity by tailoring the compositions. In this study, however, it was found that not only the volume fraction of primary dendrites but also the morphology of dendrites constitute key factors in inducing excellent ductility. We selected three compositions of Ti–Fe–Sn ultrafine eutectic composites, considering the distinct volume fractions and morphologies of β-Ti dendrites based on the Ti–Fe–Sn ternary phase diagram. As these compositions approach quasi-peritectic reaction points, the α″-Ti martensitic phase forms within the primary β-Ti dendrites due to under-cooling effects. This pre-formation of the α″-Ti martensitic phase effectively governs the growth direction of β-Ti dendrites, resulting in the development of round-shaped primary dendrites during the quenching process. These microstructural evolutions of β-Ti dendrites, in turn, lead to an improvement in ductility without a significant compromise in strength. Hence, we propose that fine-tuning the composition to control the primary dendrite morphology can be a highly effective alloy design strategy, enabling the attainment of greater macroscopic plasticity without the typical ductility and strength trade-off.more » « less
-
MAX phase foams could have various applications where tailored functional and mechanical properties are required. In this study, Ti2AlC and Ti3SiC2 MAX phase foams with controlled porosity and pore size were produced and characterized. The foams were produced from MAX phase powders by powder metallurgy method using crystalline carbohydrate as a space holder. Foams with overall porosity up to approximately 71 vol% and pore size from 250 μm to 1000 μm were successfully produced; micro-porosity and macro-porosity was characterized. Poisson's ratio and elastic moduli of the foams were measured by resonant ultrasound spectroscopy (RUS) and analyzed as a function of porosity and pore size. Different models were used to fit the experimental data and interpret the effect of pore size and amount of porosity and on elastic properties. It was found that the amount and type of porosity has a larger influence on the elastic properties than the pore size.more » « less
An official website of the United States government

