Falsified data from compromised Phasor Measurement Units (PMUs) in a smart grid induce Energy Management Systems (EMS) to have an inaccurate estimation of the state of the grid, disrupting various operations of the power grid. Moreover, the PMUs deployed at the distribution layer of a smart grid show dynamic fluctuations in their data streams, which make it extremely challenging to design effective learning frameworks for anomaly based attack detection. In this paper, we propose a noise resilient learning framework for anomaly based attack detection specifically for distribution layer PMU infrastructure, that show real time indicators of data falsifications attacks while offsetting the effect of false alarms caused by the noise. Specifically, we propose a feature extraction framework that uses some Pythagorean Means of the active power from a cluster of PMUs, reducing multi-dimensional nature of the PMU data streams via quick big data summarization. We also propose a robust and noise resilient methodology for learning thresholds based on generalized robust estimation theory of our invariant feature. We experimentally validate our approach and demonstrate improved reliability performance using two completely different datasets collected from real distribution level PMU infrastructures. 
                        more » 
                        « less   
                    
                            
                            Research Trends and Applications of PMUs
                        
                    
    
            This work is a survey of current trends in applications of PMUs. PMUs have the potential to solve major problems in the areas of power system estimation, protection, and stability. A variety of methods are being used for these purposes, including statistical techniques, mathematical transformations, probability, and AI. The results produced by the techniques reviewed in this work are promising, but there is work to be performed in the context of implementation and standardization. As the smart grid initiative continues to advance, the number of intelligent devices monitoring the power grid continues to increase. PMUs are at the center of this initiative, and as a result, each year more PMUs are deployed across the grid. Since their introduction, myriad solutions based on PMU-technology have been suggested. The high sampling rates and synchronized measurements provided by PMUs are expected to drive significant advancements across multiple fields, such as the protection, estimation, and control of the power grid. This work offers a review of contemporary research trends and applications of PMU technology. Most solutions presented in this work were published in the last five years, and techniques showing potential for significant impact are highlighted in greater detail. Being a relatively new technology, there are several issues that must be addressed before PMU-based solutions can be successfully implemented. This survey found that key areas where improvements are needed include the establishment of PMU-observability, data processing algorithms, the handling of heterogeneous sampling rates, and the minimization of the investment in infrastructure for PMU communication. Solutions based on Bayesian estimation, as well as those having a distributed architectures, show great promise. The material presented in this document is tailored to both new researchers entering this field and experienced researchers wishing to become acquainted with emerging trends. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1809739
- PAR ID:
- 10343749
- Date Published:
- Journal Name:
- Energies
- Volume:
- 15
- Issue:
- 15
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 5329
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Fast and accurate knowledge of power flows and power injections is needed for a variety of applications in the electric grid. Phasor measurement units (PMUs) can be used to directly compute them at high speeds; however, a large number of PMUs will be needed for computing all the flows and injections. Similarly, if they are calculated from the outputs of a linear state estimator, then their accuracy will deteriorate due to the quadratic relationship between voltage and power. This paper employs machine learning to perform fast and accurate flow and injection estimation in power systems that are sparsely observed by PMUs. We train a deep neural network (DNN) to learn the mapping function between PMU measurements and power flows/injections. The relation between power flows and injections is incorporated into the DNN by adding a linear constraint to its loss function. The results obtained using the IEEE 118-bus system indicate that the proposed approach performs more accurate flow/injection estimation in severely unobservable power systems compared to other data-driven methods.more » « less
- 
            The applications for wide area monitoring, protection, and control systems (WAMPC) at the control center, help with providing resilient, efficient, and secure operation of the transmission system of the smart grid. The increased proliferation of phasor measurement units (PMUs) in this space has inspired many prudent applications to assist in the process of decision making in the control centers. Machine learning (ML) based decision support systems have become viable with the availability of abundant high-resolution wide area operational PMU data. We propose a deep neural network (DNN) based supervisory protection and event diagnosis system and demonstrate that it works with very high degree of confidence. The system introduces a supervisory layer that processes the data streams collected from PMUs and detects disturbances in the power systems that may have gone unnoticed by the local monitoring and protection system. Then, we investigate compromise of the insights of this ML based supervisory control by crafting adversaries that corrupt the PMU data via minimal coordinated manipulation and identification of the spatio-temporal regions in the multidimensional PMU data in a way that the DNN classifier makes wrong event predictions. This dataset contains images that represent PMU data described in the reference paper. Each image has a dimension of [300X20X3] comprising of 300 time points, 10 voltage and 10 frequency measurements, and 3 fundamental color intensities. Each of the image represents the instance of a disturbance. We consider a disturbance pattern length of 5s, with 0.5 s before the trigger and 4.5 s after the trigger. Voltage and frequency data streams from 10 PMUs at a sampling rate of 60 frames per second, were aggregated to form these pseudo color images. The data-set consisted of three sub-folders: 1. 344 instances of faults located in the sub-folder “DB_FLT” 2. 140 instances of loss of generation located in the sub-folder “DB_GNL” 3. 21 instances of synchronous motor switching events located in the sub-folder “DB_SMS”.more » « less
- 
            The push to automate and digitize the electric grid has led to widespread installation of Phasor Measurement Units (PMUs) for improved real-time wide-area system monitoring and control. Nevertheless, transforming large volumes of highresolution PMU measurements into actionable insights remains challenging. A central challenge is creating flexible and scalable online anomaly detection in PMU data streams. PMU data can hold multiple types of anomalies arising in the physical system or the cyber system (measurements and communication networks). Increasing the grid situational awareness for noisy measurement data and Bad Data (BD) anomalies has become more and more significant. Number of machine learning, data analytics and physics based algorithms have been developed for anomaly detection, but need to be validated with realistic synchophasor data. Access to field data is very challenging due to confidentiality and security reasons. This paper presents a method for generating realistic synchrophasor data for the given synthetic network as well as event and bad data detection and classification algorithms. The developed algorithms include Bayesian and change-point techniques to identify anomalies, a statistical approach for event localization and multi-step clustering approach for event classification. Developed algorithms have been validated with satisfactory results for multiple examples of power system events including faults and load/generator/capacitor variations/switching for an IEEE test system. Set of synchrophasor data will be available publicly for other researchers.more » « less
- 
            Recent studies indicate that the noise characteristics of phasor measurement units (PMUs) can be more accurately described by non-Gaussian distributions. Consequently, estimation techniques based on Gaussian noise assumptions may produce poor results with PMU data. This paper considers the PMU based line parameter estimation (LPE) problem, and investigates the performance of four state-of-the-art techniques in solving this problem in presence of non-Gaussian measurement noise. The rigorous comparative analysis highlights the merits and demerits of each technique w.r.t. the LPE problem, and identifies conditions under which they are expected to give good results.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    