Abstract Hydroxyl radical protein footprinting (HRPF) in combination with mass spectrometry reveals the relative solvent exposure of labeled residues within a protein, thereby providing insight into protein tertiary structure. HRPF labels nineteen residues with varying degrees of reliability and reactivity. Here, we are presenting a dynamics-driven HRPF-guided algorithm for protein structure prediction. In a benchmark test of our algorithm, usage of the dynamics data in a score term resulted in notable improvement of the root-mean-square deviations of the lowest-scoring ab initio models and improved the funnel-like metric Pnearfor all benchmark proteins. We identified models with accurate atomic detail for three of the four benchmark proteins. This work suggests that HRPF data along with side chain dynamics sampled by a Rosetta mover ensemble can be used to accurately predict protein structure.
more »
« less
Computing the Structural Dynamics of RVFV L Protein Domain in Aqueous Glycerol Solutions
Many biological and biotechnological processes are controlled by protein–protein and protein–solvent interactions. In order to understand, predict, and optimize such processes, it is important to understand how solvents affect protein structure during protein–solvent interactions. In this study, all-atom molecular dynamics are used to investigate the structural dynamics and energetic properties of a C-terminal domain of the Rift Valley Fever Virus L protein solvated in glycerol and aqueous glycerol solutions in different concentrations by molecular weight. The Generalized Amber Force Field is modified by including restrained electrostatic potential atomic charges for the glycerol molecules. The peptide is considered in detail by monitoring properties like the root-mean-squared deviation, root-mean-squared fluctuation, radius of gyration, hydrodynamic radius, end-to-end distance, solvent-accessible surface area, intra-potential energy, and solvent–peptide interaction energies for hundreds of nanoseconds. Secondary structure analysis is also performed to examine the extent of conformational drift for the individual helices and sheets. We predict that the peptide helices and sheets are maintained only when the modeling strategy considers the solvent with lower glycerol concentration. We also find that the solvent-peptide becomes more cohesive with decreasing glycerol concentrations. The density and radial distribution function of glycerol solvent calculated when modeled with the modified atomic charges show a very good agreement with experimental results and other simulations at 298.15K.
more »
« less
- Award ID(s):
- 1900061
- PAR ID:
- 10343760
- Date Published:
- Journal Name:
- Biomolecules
- Volume:
- 11
- Issue:
- 10
- ISSN:
- 2218-273X
- Page Range / eLocation ID:
- 1427
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Peptide self-assembly, wherein molecule A associates with other A molecules to form fibrillar β-sheet structures, is common in nature and widely used to fabricate synthetic biomaterials. Selective coassembly of peptide pairs A and B with complementary partial charges is gaining interest due to its potential for expanding the form and function of biomaterials that can be realized. It has been hypothesized that charge-complementary peptides organize into alternating ABAB-type arrangements within assembled β-sheets, but no direct molecular-level evidence exists to support this interpretation. We report a computational and experimental approach to characterize molecular-level organization of the established peptide pair, CATCH. Discontinuous molecular dynamics simulations predict that CATCH(+) and CATCH(−) peptides coassemble but do not self-assemble. Two-layer β-sheet amyloid structures predominate, but off-pathway β-barrel oligomers are also predicted. At low concentration, transmission electron microscopy and dynamic light scattering identified nonfibrillar ∼20-nm oligomers, while at high concentrations elongated fibers predominated. Thioflavin T fluorimetry estimates rapid and near-stoichiometric coassembly of CATCH(+) and CATCH(−) at concentrations ≥100 μM. Natural abundance13C NMR and isotope-edited Fourier transform infrared spectroscopy indicate that CATCH(+) and CATCH(−) coassemble into two-component nanofibers instead of self-sorting. However,13C–13C dipolar recoupling solid-state NMR measurements also identify nonnegligible AA and BB interactions among a majority of AB pairs. Collectively, these results demonstrate that strictly alternating arrangements of β-strands predominate in coassembled CATCH structures, but deviations from perfect alternation occur. Off-pathway β-barrel oligomers are also suggested to occur in coassembled β-strand peptide systems.more » « less
-
We examine changes in the picosecond structural dynamics with irreversible photobleaching of red fluorescent proteins (RFP) mCherry, mOrange2 and TagRFP-T. Measurements of the protein dynamical transition using terahertz time-domain spectroscopy show in all cases an increase in the turn-on temperature in the bleached state. The result is surprising given that there is little change in the protein surface, and thus, the solvent dynamics held responsible for the transition should not change. A spectral analysis of the measurements guided by quasiharmonic calculations of the protein absorbance reveals that indeed the solvent dynamical turn-on temperature is independent of the thermal stability/photostate however the protein dynamical turn-on temperature shifts to higher temperatures. This is the first demonstration of switching the protein dynamical turn-on temperature with protein functional state. The observed shift in protein dynamical turn-on temperature relative to the solvent indicates an increase in the required mobile waters necessary for the protein picosecond motions, that is, these motions are more collective. Melting-point measurements reveal that the photobleached state is more thermally stable, and structural analysis of related RFP’s shows that there is an increase in internal water channels as well as a more uniform atomic root mean squared displacement. These observations are consistent with previous suggestions that water channels form with extended light excitation providing O2 access to the chromophore and subsequent fluorescence loss. We report that these same channels increase internal coupling enhancing thermal stability and collectivity of the picosecond protein motions. The terahertz spectroscopic characterization of the protein and solvent dynamical onsets can be applied generally to measure changes in collectivity of protein motions.more » « less
-
Biomolecular hydration is fundamental to biological functions. Using phase-resolved chiral sum-frequency generation spectroscopy (SFG), we probe molecular architectures and interactions of water molecules around a self-assembling antiparallel β-sheet protein. We find that the phase of the chiroptical response from the O-H stretching vibrational modes of water flips with the absolute chirality of the (l-) or (d-) antiparallel β-sheet. Therefore, we can conclude that the (d-) antiparallel β-sheet organizes water solvent into a chiral supermolecular structure with opposite handedness relative to that of the (l-) antiparallel β-sheet. We use molecular dynamics to characterize the chiral water superstructure at atomic resolution. The results show that the macroscopic chirality of antiparallel β-sheets breaks the symmetry of assemblies of surrounding water molecules. We also calculate the chiral SFG response of water surrounding (l-) and (d-) LK7β to confirm the presence of chiral water structures. Our results offer a different perspective as well as introduce experimental and computational methodologies for elucidating hydration of biomacromolecules. The findings imply potentially important but largely unexplored roles of water solvent in chiral selectivity of biomolecular interactions and the molecular origins of homochirality in the biological world.more » « less
-
Activation of SARS-CoV-2 Spike deploys its fusion peptide to a membrane of the host cell to infect it. NMR in solution demonstrates that this fusion peptide transforms from intrinsic disorder in solution into a wedge-shaped structure inserted in bilayered micelles. According to NOEs and proximity to a nitroxide spin label deep in the membrane mimic, the globular fold of three helices contrasts the open, extended conformations observed in compact prefusion states. In the hydrophobic, narrow end of the wedge, helices 1 and 2 contact the fatty acyl chains of phospholipids. 50 of the resulting paramagnetic NMR relaxation enhancements and 6 lipid-protein NOEs provided ambiguous distances as collective variables (colvars) to bias and guide MD simulations. Simulations in NAMD using the CHARMM36 forcefield included colvars for 130 medium- and long-range NOEs to maintain the equilibrium structure. In the gently NMR-biased simulations, the fusion peptide maintained its insertion of helices 1 and 2 within a single leaflet while helix 3 remained exposed. A cation occasionally visited the anionic side chains in the loop joining helices 2 and 3 or at the N-terminal end of helix 1. The unoccupied leaflet is thinned and distorted opposite the fusion peptide.The thinning could be related to the fusion peptide promoting formation of the hemi-fusion intermediate in the process of viral-cell fusion. Supported by NSF Rapid award 2030473.more » « less
An official website of the United States government

