Due to limited amplitude and controlled phase of current supplied by inverter-interfaced renewable power plants (IIRPPs), the IIRPP-side distance protection of lines connected to IIRPPs fails to detect the fault location accurately, so it may malfunction. The composite sequence network of a line connected to an IIRPP during asymmetrical faults is analyzed, and an adaptive distance protection based on the analytical model of additional impedance is proposed in this study. Based on open circuit property of negative-sequence network at the IIRPP-side, the equivalent impedance of power grid and current flowing through fault point are calculated in real-time using local measurements, which are substituted into the analytical model of additional impedance to calculate fault location. In the case of negative-sequence reactive current injection from IIRPPs during asymmetrical faults, the error of calculating fault point current from local measurements is analyzed and corrected to ensure reliability of the proposed protection. The proposed protection alleviates the effect of fault resistance in a system with weak sources. In addition, the proposed protection can adapt to different grid codes (GCs), the operation mode change of the power grid, and the capacity change of the IIRPP. PSCAD/EMTDC test results verify the effectiveness of the proposed protection.
more »
« less
WAMs Based Eigenvalue Space Model for High Impedance Fault Detection
High impedance faults present unique challenges for power system protection engineers. The first challenge is the detection of the fault, given the low current magnitudes. The second challenge is to locate the fault to allow corrective measures to be taken. Corrective actions are essential as they mitigate safety hazards and equipment damage. The problem of high impedance fault detection and location is not a new one, and despite the safety and reliability implications, relatively few efforts have been made to find a general solution. This work presents a hybrid data driven and analytical-based model for high impedance fault detection in distribution systems. The first step is to estimate a state space model of the power line being monitored. From the state space model, eigenvalues are calculated, and their dynamic behavior is used to develop zones of protection. These zones of protection are generated analytically using machine learning tools. High impedance faults are detected as they drive the eigenvalues outside of their zones. A metric called eigenvalue drift coefficient was formulated in this work to facilitate the generalization of this solution. The performance of this technique is evaluated through case studies based on the IEEE 5-Bus system modeled in Matlab. Test results are encouraging indicating potential for real-life applications.
more »
« less
- Award ID(s):
- 1809739
- PAR ID:
- 10343770
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 11
- Issue:
- 24
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 12148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Advances in deep learning have revolutionized cyber‐physical applications, including the development of autonomous vehicles. However, real‐world collisions involving autonomous control of vehicles have raised significant safety concerns regarding the use of deep neural networks (DNNs) in safety‐critical tasks, particularly perception. The inherent unverifiability of DNNs poses a key challenge in ensuring their safe and reliable operation. In this work, we propose perception simplex ( ), a fault‐tolerant application architecture designed for obstacle detection and collision avoidance. We analyse an existing LiDAR‐based classical obstacle detection algorithm to establish strict bounds on its capabilities and limitations. Such analysis and verification have not been possible for deep learning‐based perception systems yet. By employing verifiable obstacle detection algorithms, identifies obstacle existence detection faults in the output of unverifiable DNN‐based object detectors. When faults with potential collision risks are detected, appropriate corrective actions are initiated. Through extensive analysis and software‐in‐the‐loop simulations, we demonstrate that provides deterministic fault tolerance against obstacle existence detection faults, establishing a robust safety guarantee.more » « less
-
Inverter-based resources (IBRs) exhibit distinct short-circuit characteristics that challenge traditional protective relays designed for systems dominated by synchronous generators. While research often focuses on IBRs’ positive-sequence currents during faults, their zero- and negative-sequence responses under unsymmetrical faults remain underexplored. Factors such as transformer configurations and grounding methods further complicate the design of protection schemes relying on these sequence components. This paper enhances the understanding of IBR short-circuit behavior during both symmetrical and unsymmetrical faults and investigates the impact of various transformer configurations on these behaviors. We highlight the limitations of traditional protective relays in safeguarding IBRs due to their constrained fault current levels, minimal negative-sequence components, and, in many cases, the absence of zero-sequence currents. To address these challenges, a novel incremental focused directional protection scheme is introduced. This approach offers enhanced fault detection capabilities under the complex conditions posed by high renewable energy penetration and diverse transformer configurations. The proposed method provides a robust solution for ensuring reliable protection in modern power systems with high integration of IBRs, contributing to improved grid stability and resilience.more » « less
-
Aerial vehicles with dozens of rotors are becoming increasingly common in important applications such as transportation and construction. One challenge with building such a system is to ensure that the system is robust against faults: as the number of rotors increases, the likelihood of a rotor failing during operation also increases; despite the spare thrust capacity provided by the redundant rotors, a rotor fault can significantly impact the motion and safety of the system. This paper presents an efficient fault detection and isolation (FDI) method for aerial vehicles with a large number of rotors. Our approach relies on two key insights: First, the effect of a faulty rotor directly affects the tracking error in roll and in pitch. This property can be used to order our faulty rotor search space. Second, the error in either roll or pitch is related to both the distance from the (relevant) axis and the severity of a fault. With these observations, we can use probe faults to isolate faulty rotors. Evaluation results show that our technique can efficiently detect and isolate faults in multi-rotor aerial vehicles with up to 64 rotors (8 more rotors than in existing FDI work), and that it can help improve robustness. To the best of our knowledge, our FDI method is the first that scales to several dozens of rotors.more » « less
-
Faults in components (valves, sensors, etc.) of radiant floor heating and cooling systems affect the efficiency, cooling and heating capacity as well as the reliability of the system. While various fault detection and diagnostic (FDD) methods have been developed and tested for building systems, FDD algorithms for radiant heating and cooling systems have previously not been available. This paper presents an evolving learning-based FDD approach for a radiant floor heating and cooling system based on growing Gaussian mixture regression (GGMR). The experimental space was controlled with a building automation system (BAS) in which the operating conditions can be monitored, and control parameters can be overridden to desired values. Trend data for normal operation and faulty operation were collected. A total of six fault types with different severities in a radiant floor system were emulated through overriding control parameters. An FDD model based on the GGMR approach was developed with training data and the performance of the model was tested for "known" faults that were including in the training and new "unknown" faults that were implemented in the fault testing. The prediction accuracy for each known fault was extremely high with the lowest prediction accuracy of 98% for one of the faults. The algorithm was successful in detecting the new fault as an unknown state before evolving the model and in diagnosing it as a new fault after evolving the model.more » « less
An official website of the United States government

