Nanopatterned tribocharge can be generated on the surface of elastomers through their replica molding with nanotextured molds. Despite its vast application potential, the physical conditions enabling the phenomenon have not been clarified in the framework of analytical mechanics. Here, we explain the final tribocharge pattern by separately applying two models, namely cohesive zone failure and cumulative fracture energy, as a function of the mold nanotexture’s aspect ratio. These models deepen our understanding of the triboelectrification phenomenon.
more »
« less
Mechano-Triboelectric Analysis of Surface Charge Generation on Replica-Molded Elastomeric Nanodomes
Replica molding-based triboelectrification has emerged as a new and facile technique to generate nanopatterned tribocharge on elastomer surfaces. The “mechano-triboelectric charging model” has been developed to explain the mechanism of the charge formation and patterning process. However, this model has not been validated to cover the full variety of nanotexture shapes. Moreover, the experimental estimation of the tribocharge’s surface density is still challenging due to the thick and insulating nature of the elastomeric substrate. In this work, we perform experiments in combination with numerical analysis to complete the mechano-triboelectrification charging model. By utilizing Kelvin probe force microscopy (KPFM) and finite element analysis, we reveal that the mechano-triboelectric charging model works for replica molding of both recessed and protruding nanotextures. In addition, by combining KPFM with numerical electrostatic modeling, we improve the accuracy of the surface charge density estimation and cross-calibrate the result against that of electrostatic force microscopy. Overall, the regions which underwent strong interfacial friction during the replica molding exhibited high surface potential and charge density, while those suffering from weak interfacial friction exhibited low values on both. These multi-physical approaches provide useful and important tools for comprehensive analysis of triboelectrification and generation of nanopatterned tribocharge. The results will widen our fundamental understanding of nanoscale triboelectricity and advance the nanopatterned charge generation process for future applications.
more »
« less
- Award ID(s):
- 1760348
- PAR ID:
- 10343871
- Date Published:
- Journal Name:
- Micromachines
- Volume:
- 12
- Issue:
- 12
- ISSN:
- 2072-666X
- Page Range / eLocation ID:
- 1460
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Triboelectric energy harvesters or nanogenerators exploit both contact electrication and electrostatic induction to scavenge excess energy from random motions of mechanical structures. This study focuses on the modeling of triboelectric energy harvesters in the conguration of contact-separation impact oscillators. While mechanical and electrostatic elements in such systems can be satisfactorily modeled based on existing theories, the underlying physics of contact electrication is still under debate. The aim of this work is to introduce the surface charge density of dielectric layers as a variable into the macroscopic equations of motion of triboelectric impact oscillators by experimentally investigating the relation between the impact force and the charge transfer during contact electrication. Specifically, specimens with selected pairs of materials are put under a solenoid-driven pressing tester which charges the specimens with a vertical force whose magnitude, frequency and duty cycle can be controlled. An electrometer is used to monitor the short circuit charge flow between the electrodes from which the charge accumulation on dielectric layers can be extracted. With results from parameter-sweep tests, the produced map from contact force to surface charge density can be integrated into equations of motion via curve fitting or interpolation.more » « less
-
Abstract The effects of water and temperature on the triboelectrification of granular materials have been reported by numerous authors, but have not been studied robustly in the context of volcanic plumes. Here, we present the results of a set of experiments designed to elucidate how environmental conditions modulate the triboelectric characteristics of volcanic ash in the upper region of the convective column. We find that small amounts of water can reduce the charge collected by submillimeter‐sized ash grains by up to an order of magnitude. Increasing temperature at a constant relative humidity also appears to decrease the amount of charge gained by particles. Analysis of our data shows that if particles undergo low‐energy, low‐frequency collisions in humid environments under minute‐long time scales, charge dissipation dominates over charge accumulation. Thus, our work suggests that triboelectric charging may be an inefficient electrification mechanism outside of the gas‐thrust region where collision energies and rates are high and residence times are low.more » « less
-
Abstract Correlative scanning probe microscopy of chemical identity, surface potential, and mechanical properties provide insight into the structure–function relationships of nanomaterials. However, simultaneous measurement with comparable and high resolution is a challenge. We seamlessly integrated nanoscale photothermal infrared imaging with Coulomb force detection to form peak force infrared–Kelvin probe force microscopy (PFIR‐KPFM), which enables simultaneous nanomapping of infrared absorption, surface potential, and mechanical properties with approximately 10 nm spatial resolution in a single‐pass scan. MAPbBr3perovskite crystals of different degradation pathways were studied in situ. Nanoscale charge accumulations were observed in MAPbBr3near the boundary to PbBr2. PFIR‐KPFM also revealed correlations between residual charges and secondary conformation in amyloid fibrils. PFIR‐KPFM is applicable to other heterogeneous materials at the nanoscale for correlative multimodal characterizations.more » « less
-
null (Ed.)Abstract We report an investigation of the friction mechanisms of MoS 2 thin films under changing environments and contact conditions using a variety of computational and experimental techniques. Molecular dynamics simulations were used to study the effects of water and molecular oxygen on friction and bonding of MoS 2 lamellae during initial sliding. Characterization via photoelectron emission microscopy (PEEM) and Kelvin probe force microscopy (KPFM) were used to determine work function changes in shear modified material within the top few nanometers of MoS 2 wear scars. The work function was shown to change with contact conditions and environment, and shown by density functional theory (DFT) calculations and literature reports to be correlated with lamellae size and thickness of the basally oriented surface layer. Results from nanoscale simulations and macroscale experiments suggest that the evolution of the friction behavior of MoS 2 is linked primarily to the formation or inhibition of a basally oriented, molecularly thin surface film with long-range order.more » « less
An official website of the United States government

