skip to main content


Title: Mobile Augmented Reality for Teaching Trigonometry
For many students, trigonometry is a difficult subject because it requires strong spatial visualization abilities. A team at Jackson State University makes the teaching and learning process easer with a new learning tool for mobile phones developed using augmented reality (AR). The results indicated that AR incorporated learning tool has great potential for learning trigonometry.  more » « less
Award ID(s):
1818672
NSF-PAR ID:
10344017
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Langenberg, B.; Lindsay, K.; Dowell, C.
Date Published:
Journal Name:
Futurum
Issue:
6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advances in computational technology provide opportunities to explore new methods to improve spatial abilities and the understanding of buildings in architecture education. The research employed BIMxAR, a Building Information Modeling-enabled AR educational tool with novel visualization features to support learning and understanding construction systems, materials configuration, and 3D section views of complex building structures. We validated the research through a test case based on a quasi-experimental research design, in which BIMxAR was used as an intervention. Two study groups were employed - non-AR and AR. The learning gain differences within and between the groups were not statistically significant, however, the AR group perceived significantly less workload and higher performance compared to the non-AR group. These findings suggest that the AR version is an easy, useful, and convenient learning tool. 
    more » « less
  2. null (Ed.)
    Immersive technologies such as Virtual Reality (VR) and Augmented Reality (AR) have become the worldwide huge technological innovations impacting human life significantly. While the VR is an enclosed environment separated completely from the real world, AR allows users to merge the digital and physical worlds and enable the interaction between them. The wide usage of AR has led researchers to investigate its potential capability in several areas including STEM-related fields. Previous research shows that AR assisted courses tend to enhance students’ learning, spatial cognition, increase the students’ motivation and engagement in the learning process. In this study, the researchers have developed an AR application to assist students with spatial cognition and remote course engagement independently. The ARCADE tool enables students to not only visualize the isometric product from its orthogonal views, but it also provides short tutorial clips on how a specific feature was developed and what tools were used. The students can perform basic modifications on the 3D part in the ARCADE such as section views, details views, scale, rotate and explode the assembly views. Although this project is a work in progress, the preliminary pretest and posttest results show there is a significant improvement in students’ spatial cognition when the proposed tool is used to assist the course. 
    more » « less
  3. Digital technologies have the potential to support informal STEM learning by fostering immersion, interactivity, and engagement with scientific material. AR in particular can overlay digital information on real-world objects and places, revealing and allowing interaction with things the public would normally not see. This is particularly valuable for historical sciences like geology, archaeology, and paleontology, where abstract concepts and unusual/restricted access settings (such as geological or fossil sites, and laboratories) spark curiosity, but also create challenges for fostering learning. However, AR as a tool is still in its nascent stages. Current applications are as likely to be “fun gimmicks” as they are to produce actual learning gains. At La Brea Tar Pits (California, USA) we are researching what makes paleontology learning AR good. We have conducted two ARlearning experiences to test whether AR is better at reducing scientific misconceptions relative to traditional static museum signage and test the effectiveness of several modes of AR delivery (VR headset vs handheld, high vs low interactivity). The first experience taught participants about Pleistocene climate, flora, and fauna. We found that handheld high interactivity AR is preferred, and while no AR condition had greater learning outcomes than comparable signage, the AR experience generated greater curiosity. The second experience (currently underway) invites participants to explore how organisms become entrapped in the asphalt seeps in a life-size AR scene. In addition to both of these experiences, we have created versions of each of the extinct Pleistocene animals represented in the AR experiences that can be interacted with Snapchat, Instagram, or native AR on a user’s phone, that is immediately suitable for classroom and off-site use. Funding Sources National Science Foundation AISL grant 
    more » « less
  4. Fourier analysis learning trajectories are investigated in this full paper as a joint interdisciplinary construct for a scholarly collaboration among engineering and mathematics faculty. This is a dynamic and recursive construct for aligning, developing, and sharing research based innovative practices for engineering mathematics education. Towards building more coherence and transfer of learning between engineering and mathematics courses, these trajectories offer experimental practice templates for the interdisciplinary community of practice for engineering mathematics education. Conjectured learning trajectories for Fourier analysis thinking are here articulated and experimented in three courses - Trigonometry, Linear Algebra, and Signal Processing. Informed by the interdisciplinary perspectives from the team, these trajectories help to design instruction to support the complex learning of the mathematical, and engineering foundations for the advanced mathematical concepts and practices such as Fourier Analysis for engineers. The re- sults highlight the impact of collaborative, interdisciplinary, and innovative practices within and across courses to purposefully build and refine instruction to foster coherence and transfer with learning trajectories across mathematics and engineering courses for engineering majors. This offers a transformative process towards an interdisciplinary engineering mathematics education. The valid assessment and measurement of complex learning outcomes along learning trajectories are discussed for engineering mathematics education, paving the pathway for our future research direction. 
    more » « less
  5. Deep learning (DL) algorithms have achieved significantly high performance in object detection tasks. At the same time, augmented reality (AR) techniques are transforming the ways that we work and connect with people. With the increasing popularity of online and hybrid learning, we propose a new framework for improving students’ learning experiences with electrical engineering lab equipment by incorporating the abovementioned technologies. The DL powered automatic object detection component integrated into the AR application is designed to recognize equipment such as multimeter, oscilloscope, wave generator, and power supply. A deep neural network model, namely MobileNet-SSD v2, is implemented for equipment detection using TensorFlow’s object detection API. When a piece of equipment is detected, the corresponding AR-based tutorial will be displayed on the screen. The mean average precision (mAP) of the developed equipment detection model is 81.4%, while the average recall of the model is 85.3%. Furthermore, to demonstrate practical application of the proposed framework, we develop a multimeter tutorial where virtual models are superimposed on real multimeters. The tutorial includes images and web links as well to help users learn more effectively. The Unity3D game engine is used as the primary development tool for this tutorial to integrate DL and AR frameworks and create immersive scenarios. The proposed framework can be a useful foundation for AR and machine-learning-based frameworks for industrial and educational training. 
    more » « less