skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inherited regulation for advanced ARTs: comparing jurisdictions’ applications of existing governance regimes to emerging reproductive technologies
Abstract Over the past 5 years, advanced assisted reproductive technologies (ARTs), such as mitochondrial replacement therapies (MRTs) and heritable human genome editing (HHGE), have raised global policy concerns and fears of ‘unregulated’ proliferation. Yet, few innovations are ever truly unregulated and more often fall within the scope of one or more pre-existing regulatory regimes, a process referred to as ‘inherited regulation’. While the United Kingdom has enacted new legislation to specifically authorize and closely regulate MRTs, many jurisdictions will likely default to current oversight systems to manage advanced ARTs. This article evaluates and compares how several jurisdictions have already used four types of inherited regulatory regimes to manage MRTs and HHGE. Cases are drawn from jurisdictions where inherited regulatory interventions on advanced ARTs have taken place (USA, Greece, Ukraine, China, and Russia) and include jurisdictions closely connected with those cases (Mexico and Spain). When accounting for political, cultural, and religious contexts, many of these inherited regimes offer promise as starting points for governance of advanced ARTs, yet each will require further adjustments and tailoring to adequately manage the benefits and risks of these powerful innovations.  more » « less
Award ID(s):
1828010
PAR ID:
10344091
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Law and the Biosciences
Volume:
9
Issue:
1
ISSN:
2053-9711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The COVID-19 pandemic has caused more than 1,000,000 reported deaths globally, of which more than 200,000 have been reported in the United States as of October 1, 2020. Public health interventions have had significant impacts in reducing transmission and in averting even more deaths. Nonetheless, in many jurisdictions, the decline of cases and fatalities after apparent epidemic peaks has not been rapid. Instead, the asymmetric decline in cases appears, in most cases, to be consistent with plateau- or shoulder-like phenomena—a qualitative observation reinforced by a symmetry analysis of US state-level fatality data. Here we explore a model of fatality-driven awareness in which individual protective measures increase with death rates. In this model, fast increases to the peak are often followed by plateaus, shoulders, and lag-driven oscillations. The asymmetric shape of model-predicted incidence and fatality curves is consistent with observations from many jurisdictions. Yet, in contrast to model predictions, we find that population-level mobility metrics usually increased from low levels before fatalities reached an initial peak. We show that incorporating fatigue and long-term behavior change can reconcile the apparent premature relaxation of mobility reductions and help understand when post-peak dynamics are likely to lead to a resurgence of cases. 
    more » « less
  2. Abstract BackgroundThe development of public health policy is inextricably linked with governance structure. In our increasingly globalized world, human migration and infectious diseases often span multiple administrative jurisdictions that might have different systems of government and divergent management objectives. However, few studies have considered how the allocation of regulatory authority among jurisdictions can affect disease management outcomes. MethodsHere we evaluate the relative merits of decentralized and centralized management by developing and numerically analyzing a two-jurisdictionSIRSmodel that explicitly incorporates migration. In our model, managers choose between vaccination, isolation, medication, border closure, and a travel ban on infected individuals while aiming to minimize either the number of cases or the number of deaths. ResultsWe consider a variety of scenarios and show how optimal strategies differ for decentralized and centralized management levels. We demonstrate that policies formed in the best interest of individual jurisdictions may not achieve global objectives, and identify situations where locally applied interventions can lead to an overall increase in the numbers of cases and deaths. ConclusionsOur approach underscores the importance of tailoring disease management plans to existing regulatory structures as part of an evidence-based decision framework. Most importantly, we demonstrate that there needs to be a greater consideration of the degree to which governance structure impacts disease outcomes. 
    more » « less
  3. Abstract Regulatory agencies aim to protect the public by moderating risks associated with innovation, but a good regulatory regime should also promote justified public trust. After introducing the USDA 2020 SECURE Rule for regulation of biotech innovation as a case study, this essay develops a theory of justified public trust in regulation. On the theory advanced here, to be trustworthy, a regulatory regime must (1) fairly and effectively manage risk, must be (2) “science based” in the relevant sense, and must in addition be (3) truthful, (4) transparent, and (5) responsive to public input. Evaluated with these norms, the USDA SECURE Rule is shown to be deeply flawed, since it fails appropriately to manage risk, and similarly fails to satisfy other normative requirements for justified trust. The argument identifies ways in which the SECURE Rule itself might be improved, but more broadly provides a normative framework for the evaluation of trustworthy regulatory policy-making. 
    more » « less
  4. This work studies the unsupervised re-ranking procedure for object retrieval and person re-identification with a specific concentration on an ensemble of multiple metrics (or similarities). While the re-ranking step is involved by running a diffusion process on the underlying data manifolds, thefusionstepcanleveragethecomplementarityofmultiple metrics. We give a comprehensive summary of existing fusion with diffusion strategies, and systematically analyze their pros and cons. Based on the analysis, we propose a unified yet robust algorithm which inherits their advantages and discards their disadvantages. Hence, we call it Unified Ensemble Diffusion (UED). More interestingly, we derive that the inherited properties indeed stem from a theoretical framework, where the relevant works can be elegantly summarized as special cases of UED by imposing additional constraints on the objective function and varying the solver of similarity propagation. Extensive experiments with 3D shape retrieval, image retrieval and person re-identification demonstrate that the proposed framework outperforms the state of the arts, and at the same time suggest that re-ranking via metric fusion is a promising tool to further improve the retrieval performance of existing algorithms. 
    more » « less
  5. Oligodendrocytes are multifunctional central nervous system (CNS) glia that are essential for neural function in gnathostomes. The evolutionary origins and specializations of the oligodendrocyte cell type are among the many remaining mysteries in glial biology and neuroscience. The role of oligodendrocytes as CNS myelinating glia is well established, but recent studies demonstrate that oligodendrocytes also participate in several myelin-independent aspects of CNS development, function, and maintenance. Furthermore, many recent studies have collectively advanced our understanding of myelin plasticity, and it is now clear that experience-dependent adaptations to myelination are an additional form of neural plasticity. These observations beg the questions of when and for which functions the ancestral oligodendrocyte cell type emerged, when primitive oligodendrocytes evolved new functionalities, and the genetic changes responsible for these evolutionary innovations. Here, I review recent findings and propose working models addressing the origins and evolution of the oligodendrocyte cell type and adaptive myelination. The core gene regulatory network (GRN) specifying the oligodendrocyte cell type is also reviewed as a means to probe the existence of oligodendrocytes in basal vertebrates and chordate invertebrates. 
    more » « less