skip to main content

This content will become publicly available on July 7, 2023

Title: AudaCITY: A Capacity-Building Research Method for Urban Sustainability Transformation
The scale and urgency of sustainability problems the world over has led to calls for sustainability transformations in cities, regions, and countries. Such calls for transformation are underlain by a persistent knowledge-to-action gap between scientific knowledge production, policy, and practice. To rise to the challenges of sustainability and resilience, municipal administrators need to set evidence-based and ambitious sustainability targets and develop strategies to achieve them. Simultaneously, transdisciplinary sustainability science researchers need to generate scientific knowledge to further enable cities along pathways of transformation. This paper details a collaborative backcasting game, AudaCITY, developed to build transformative capacity in city administrations while also generating deep contextual knowledge to inform a transformative sustainability science research agenda. We present AudaCITY's key features, potential applications and adaptations, and exemplary outputs and outcomes for cities and researchers. We conclude with recommendations for adopting and adapting AudaCITY for use in action-oriented and transformational sustainability science and capacity building.
Authors:
; ; ;
Award ID(s):
1828010
Publication Date:
NSF-PAR ID:
10344113
Journal Name:
Frontiers in Sustainable Cities
Volume:
4
ISSN:
2624-9634
Sponsoring Org:
National Science Foundation
More Like this
  1. Translating information between the domains of systematics and conservation requires novel information management designs. Such designs should improve interactions across the trading zone between the domains, herein understood as the model according to which knowledge and uncertainty are productively translated in both directions (cf. Collins et al. 2019). Two commonly held attitudes stand in the way of designing a well-functioning systematics-to-conservation trading zone. On one side, there are calls to unify the knowledge signal produced by systematics, underpinned by the argument that such unification is a necessary precondition for conservation policy to be reliably expressed and enacted (e.g., Garnett et al. 2020). As a matter of legal scholarship, the argument for systematic unity by legislative necessity is principally false (Weiss 2003, MacNeil 2009, Chromá 2011), but perhaps effective enough as a strategy to win over audiences unsure about robust law-making practices in light of variable and uncertain knowledge. On the other side, there is an attitude that conservation cannot ever restrict the academic freedom of systematics as a scientific discipline (e.g., Raposo et al. 2017). This otherwise sound argument misses the mark in the context of designing a productive trading zone with conservation. The central interactional challenge is not whethermore »the systematic knowledge can vary at a given time and/or evolve over time, but whether these signal dynamics are tractable in ways that actors can translate into robust maxims for conservation. Redesigning the trading zone should rest on the (historically validated) projection that systematics will continue to attract generations of inspired, productive researchers and broad-based societal support, frequently leading to protracted conflicts and dramatic shifts in how practioners in the field organize and identify organismal lineages subject to conservation. This confident outlook for systematics' future, in turn, should refocus the challenge of designing the trading zone as one of building better information services to model the concurrent conflicts and longer-term evolution of systematic knowledge. It would seem unreasonable to expect the International Union for Conservation of Nature (IUCN) Red List Index to develop better data science models for the dynamics of systematic knowledge (cf. Hoffmann et al. 2011) than are operational in the most reputable information systems designed and used by domain experts (Burgin et al. 2018). The reasonable challenge from conservation to systematics is not to stop being a science but to be a better data science. In this paper, we will review advances in biodiversity data science in relation to representing and reasoning over changes in systematic knowledge with computational logic, i.e., modeling systematic intelligence (Franz et al. 2016). We stress-test this approach with a use case where rapid systematic signal change and high stakes for conservation action intersect, i.e., the Malagasy mouse lemurs ( Microcebus É. Geoffroy, 1834 sec. Schüßler et al. 2020), where the number of recognized species-level concepts has risen from 2 to 25 in the span of 38 years (1982–2020). As much as scientifically defensible, we extend our modeling approach to the level of individual published occurrence records, where the inability to do so sometimes reflects substandard practice but more importantly reveals systemic inadequacies in biodiversity data science or informational modeling. In the absence of shared, sound theoretical foundations to assess taxonomic congruence or incongruence across treatments, and in the absence of biodiversity data platforms capable of propagating logic-enabled, scalable occurrence-to-concept identification events to produce alternative and succeeding distribution maps, there is no robust way to provide a knowledge signal from systematics to conservation that is both consistent in its syntax and acccurate in its semantics, in the sense of accurately reflecting the variation and uncertainty that exists across multiple systematic perspectives. Translating this diagnosis into new designs for the trading zone is only one "half" of the solution, i.e., a technical advancement that then would need to be socially endorsed and incentivized by systematic and conservation communities motivated to elevate their collaborative interactions and trade robustly in inherently variable and uncertain information.« less
  2. What will it take to create a transformation in human society to coexist with our human and more-than-human earth kin?” – Journal of Sustainability Education call for papers 2021 The question of what it will take to induce societal transformation in the face of climate change is daunting to consider, intimidating to try and answer in the abstract, and potentially paralyzing to try and address through teaching, research, and practice. That is, in response to the JSE editors’ question, we may be tempted to simply curl up in a ball and rock back and forth in search of temporary comfort and escape. Yet, in crafting the subtitle for this issue on climate change, JSE’s editorial team has pointed to multiple paths forward: resistance, recuperation, and resilience. Each of those terms have their roots in sustained action, with the Latin meaning of the ‘re’ prefix based in doing again and again (dictionary.com, 1995). The same implication is present with kindred concepts often used in the realm of grappling with climate change like regeneration, reparations, restoration, recentering, and renewal. Altogether the emphasis on sustained actions, with each term in its own way looking both backwards and forwards in time and knowledge, raisesmore »a very direct challenge for educators: how do we help students (and ourselves) prepare to engage in sustained action in the face of climate change and its root causes of extraction, inequity, racism and colonialism? In this article, we describe our response to this question, admittedly very much a work in progress. We first elaborate on the conceptual and practical challenges in preparing students for sustained action to imagine and enact the future. Paramount among these challenges is acknowledging that climate change cannot be addressed in an equitable way without also addressing its roots in colonization, racism, sexism, and extractive capitalism. Next, we discuss our integrated teaching-research-engagement approach, developed as part of a US National Science Foundation CAREER award project aimed at examining the potential role of compassion as a transformative practice for reducing long-term risks from natural hazards and climate change. Then, we provide summaries of and reflections on a pair of courses taught in 2019 and 2020 that explored, respectively the inner personal dimensions and external relational dimensions of professional work to reduce climate risks. Finally, we detail some of the lessons we’ve learned in the processes of convening these courses and look to future opportunities for growth and sustained action as educators ourselves.« less
  3. Indigenous and rural societies who have contributed least to anthropogenic climate change are facing its harshest consequences. One of the greatest challenges of climate change is lack of predictability, especially at the local scale. An estimated 70-80% of the world’s food is produced by smallholders with less than two hectares of land. These small-scale farmers and herders face an ever-shifting ‘new normal’ climate, increasing inconsistency in the seasonality of temperature and precipitation, and higher frequency of what were once considered extreme weather events. Climate variability is disrupting food systems and generating a debilitating anxiety. Anticipatory capacity – the ability to envision possible futures and develop a plan of action to deal with uncertainties – is needed urgently. Communities and researchers must create innovative systems to recognize and respond to climate trends and prepare for a greater range of possible scenarios. To build anticipatory capacity for climate change, communities need systems that are effective at the scale of the village and valley. In this brief communication we suggest a new approach for applied participatory action research to build anticipatory capacity for climate change. Specifically, we describe the development of ecological calendars that integrate indigenous knowledge and scientific data, and therefore requiremore »input from both communities of inquirers and communities of practice. We provide a case study of our ongoing work in the Pamir Mountains of Afghanistan, China, Kyrgyzstan, and Tajikistan, where we are in the midst of transdisciplinaryresearch with indigenous agropastoralists.« less
  4. The solutions-based design framework of permaculture exhibits transformative potential, working to holistically integrate natural and human systems toward a more just society. The term can be defined and applied in a breadth of ways, contributing to both strengths and weaknesses for its capacity toward change. To explore the tension of breadth as strength and weakness, we interviewed 25 prominent permaculture teachers and practitioners across the United States (US) regarding how they define permaculture as a concept and perceive the term’s utility. We find that permaculture casts a wide net that participants grapple with in their own work. They engaged in a negotiation process of how they associate or disassociate themselves with the term, recognizing that it can be both unifying and polarizing. Further, there was noted concern of permaculture’s failure to cite and acknowledge its rootedness in Indigenous knowledge, as well as distinguish itself from Indigenous alternatives. We contextualize these findings within the resounding call for a decolonization of modern ways of living and the science of sustainability, of which permaculture can be critically part of. We conclude with recommended best practices for how to continuously (re-)define permaculture in an embodied and dynamic way to work toward these goals.
  5. Abstract The Deep Ocean Observing Strategy (DOOS) is an international, community-driven initiative that facilitates collaboration across disciplines and fields, elevates a diverse cohort of early career researchers into future leaders, and connects scientific advancements to societal needs. DOOS represents a global network of deep-ocean observing, mapping, and modeling experts, focusing community efforts in the support of strong science, policy, and planning for sustainable oceans. Its initiatives work to propose deep-sea Essential Ocean Variables; assess technology development; develop shared best practices, standards, and cross-calibration procedures; and transfer knowledge to policy makers and deep-ocean stakeholders. Several of these efforts align with the vision of the UN Ocean Decade to generate the science we need to create the deep ocean we want. DOOS works toward (1) a healthy and resilient deep ocean by informing science-based conservation actions, including optimizing data delivery, creating habitat and ecological maps of critical areas, and developing regional demonstration projects; (2) a predicted deep ocean by strengthening collaborations within the modeling community, determining needs for interdisciplinary modeling and observing system assessment in the deep ocean; (3) an accessible deep ocean by enhancing open access to innovative low-cost sensors and open-source plans, making deep-ocean data Findable, Accessible, Interoperable, and Reusable,more »and focusing on capacity development in developing countries; and finally (4) an inspiring and engaging deep ocean by translating science to stakeholders/end users and informing policy and management decisions, including in international waters.« less