skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Addressing Algorithmic Bias in AI-Driven Customer Management
Research on AI has gained momentum in recent years. Many scholars and practitioners increasingly highlight the dark sides of AI, particularly related to algorithm bias. This study elucidates situations in which AI-enabled analytics systems make biased decisions against customers based on gender, race, religion, age, nationality or socioeconomic status. Based on a systematic literature review, this research proposes two approaches (i.e., a priori and post-hoc) to overcome such biases in customer management. As part of a priori approach, the findings suggest scientific, application, stakeholder and assurance consistencies. With regard to the post-hoc approach, the findings recommend six steps: bias identification, review of extant findings, selection of the right variables, responsible and ethical model development, data analysis and action on insights. Overall, this study contributes to the ethical and responsible use of AI applications.  more » « less
Award ID(s):
1828010
PAR ID:
10344126
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Global Information Management
Volume:
29
Issue:
6
ISSN:
1062-7375
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many research communities routinely conduct activities that fall outside the bounds of traditional human subjects research, yet still frequently rely on the determinations of institutional review boards (IRBs) or similar regulatory bodies to scope ethical decision-making. Presented as a U.S. university-based fictional memo describing a post-hoc IRB review of a research study about social media and public health, this design fiction draws inspiration from current debates and uncertainties in the HCI and social computing communities around issues such as the use of public data, privacy, open science, and unintended consequences, in order to highlight the limitations of regulatory bodies as arbiters of ethics and the importance of forward-thinking ethical considerations from researchers and research communities. 
    more » « less
  2. Abstract Artificial intelligence (AI) can be used to improve performance across a wide range of Earth system prediction tasks. As with any application of AI, it is important for AI to be developed in an ethical and responsible manner to minimize bias and other effects. In this work, we extend our previous work demonstrating how AI can go wrong with weather and climate applications by presenting a categorization of bias for AI in the Earth sciences. This categorization can assist AI developers to identify potential biases that can affect their model throughout the AI development life cycle. We highlight examples from a variety of Earth system prediction tasks of each category of bias. 
    more » « less
  3. Abstract This study examines the role of human dynamics within Geospatial Artificial Intelligence (GeoAI), highlighting its potential to reshape the geospatial research field. GeoAI, emerging from the confluence of geospatial technologies and artificial intelligence, is revolutionizing our comprehension of human-environmental interactions. This revolution is powered by large-scale models trained on extensive geospatial datasets, employing deep learning to analyze complex geospatial phenomena. Our findings highlight the synergy between human intelligence and AI. Particularly, the humans-as-sensors approach enhances the accuracy of geospatial data analysis by leveraging human-centric AI, while the evolving GeoAI landscape underscores the significance of human–robot interaction and the customization of GeoAI services to meet individual needs. The concept of mixed-experts GeoAI, integrating human expertise with AI, plays a crucial role in conducting sophisticated data analyses, ensuring that human insights remain at the forefront of this field. This paper also tackles ethical issues such as privacy and bias, which are pivotal for the ethical application of GeoAI. By exploring these human-centric considerations, we discuss how the collaborations between humans and AI transform the future of work at the human-technology frontier and redefine the role of AI in geospatial contexts. 
    more » « less
  4. Youth regularly use technology driven by artificial intelligence (AI). However, it is increasingly well-known that AI can cause harm on small and large scales, especially for those underrepresented in tech fields. Recently, users have played active roles in surfacing and mitigating harm from algorithmic bias. Despite being frequent users of AI, youth have been under-explored as potential contributors and stakeholders to the future of AI. We consider three notions that may be at the root of youth facing barriers to playing an active role in responsible AI, which are youth (1) cannot understand the technical aspects of AI, (2) cannot understand the ethical issues around AI, and (3) need protection from serious topics related to bias and injustice. In this study, we worked with youth (N = 30) in first through twelfth grade and parents (N = 6) to explore how youth can be part of identifying algorithmic bias and designing future systems to address problematic technology behavior. We found that youth are capable of identifying and articulating algorithmic bias, often in great detail. Participants suggested different ways users could give feedback for AI that reflects their values of diversity and inclusion. Youth who may have less experience with computing or exposure to societal structures can be supported by peers or adults with more of this knowledge, leading to critical conversations about fairer AI. This work illustrates youths' insights, suggesting that they should be integrated in building a future of responsible AI. 
    more » « less
  5. The need for citizens to better understand the ethical and social challenges of algorithmic systems has led to a rapid proliferation of AI literacy initiatives. After reviewing the literature on AI literacy projects, we found that most educational practices in this area are based on teaching programming fundamentals, primarily to K-12 students. This leaves out citizens and those who are primarily interested in understanding the implications of automated decision- making systems, rather than in learning to code. To address these gaps, this article explores the methodological contributions of responsible AI education practices that focus first on stakeholders when designing learning experiences for different audiences and contexts. The article examines the weaknesses identified in current AI literacy projects, explains the stakeholder-first approach, and analyzes several responsible AI education case studies, to illustrate how such an approach can help overcome the aforementioned limitations. The results suggest that the stakeholder-first approach allows to address audiences beyond the usual ones in the field of AI literacy, and to incorporate new content and methodologies depending on the needs of the respective audiences, thus opening new avenues for teaching and research in the field. 
    more » « less