Goal-oriented Script Generation is a new task of generating a list of steps that can fulfill the given goal. In this paper, we propose to extend the task from the perspective of cognitive theory. Instead of a simple flat structure, the steps are typically organized hierarchically — Human often decompose a complex task into subgoals, where each subgoal can be further decomposed into steps. To establish the benchmark, we contribute a new dataset, propose several baseline methods, and set up evaluation metrics. Both automatic and human evaluation verify the high-quality of dataset, as well as the effectiveness of incorporating subgoals into hierarchical script generation. Furthermore, We also design and evaluate the model to discover subgoal, and find that it is a bit more difficult to decompose the goals than summarizing from segmented steps.
more »
« less
Goal-Oriented Script Construction
The knowledge of scripts, common chains of events in stereotypical scenarios, is a valuable asset for task-oriented natural language understanding systems. We propose the Goal-Oriented Script Construction task, where a model produces a sequence of steps to accomplish a given goal. We pilot our task on the first multilingual script learning dataset supporting 18 languages collected from wikiHow, a website containing half a million how-to articles. For baselines, we consider both a generation-based approach using a language model and a retrieval-based approach by first retrieving the relevant steps from a large candidate pool and then ordering them. We show that our task is practical, feasible but challenging for state-of-the-art Transformer models, and that our methods can be readily deployed for various other datasets and domains with decent zero-shot performance.
more »
« less
- Award ID(s):
- 1928474
- PAR ID:
- 10344232
- Date Published:
- Journal Name:
- Proceedings of the 14th International Conference on Natural Language Generation
- Page Range / eLocation ID:
- 184 - 200
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Semantic communication marks a new paradigm shift from bit-wise data transmission to semantic information delivery for the purpose of bandwidth reduction. To more effectively carry out specialized downstream tasks at the receiver end, it is crucial to define the most critical semantic message in the data based on the task or goal-oriented features. In this work, we propose a novel goal-oriented communication (GO-COM) framework, namely Goal-Oriented Semantic Variational Autoencoder (GOS-VAE), by focusing on the extraction of the semantics vital to the downstream tasks. Specifically, we adopt a Vector Quantized Variational Autoencoder (VQ-VAE) to compress media data at the transmitter side. Instead of targeting the pixel-wise image data reconstruction, we measure the quality-of-service at the receiver end based on a pre-defined task-incentivized model. Moreover, to capture the relevant semantic features in the data reconstruction, imitation learning is adopted to measure the data regeneration quality in terms of goal-oriented semantics. Our experimental results demonstrate the power of imitation learning in characterizing goal-oriented semantics and bandwidth efficiency of our proposed GOS-VAE.more » « less
-
The present study examined the role of script in bilingual speech planning by comparing the performance of same and different-script bilinguals. Spanish-English bilinguals (Experiment 1) and Japanese-English bilinguals (Experiment 2) performed a picture-word interference task in which they were asked to name a picture of an object in English, their second language, while ignoring a visual distractor word in Spanish or Japanese, their first language. Results replicated the general pattern seen in previous bilingual picture-word interference studies for the same-script, Spanish-English bilinguals but not for the different-script, Japanese-English bilinguals. Both groups showed translation facilitation, whereas only Spanish-English bilinguals demonstrated semantic interference, phonological facilitation, and phono-translation facilitation. These results suggest that when the script of the language not in use is present in the task, bilinguals appear to exploit the perceptual difference as a language cue to direct lexical access to the intended language earlier in the process of speech planning.more » « less
-
null (Ed.)We present a query-based biomedical information retrieval task across two vastly different genres -- newswire and research literature -- where the goal is to find the research publication that supports the primary claim made in a health-related news article. For this task, we present a new dataset of 5,034 claims from news paired with research abstracts. Our approach consists of two steps: (i) selecting the most relevant candidates from a collection of 222k research abstracts, and (ii) re-ranking this list. We compare the classical IR approach using BM25 with more recent transformer-based models. Our results show that cross-genre medical IR is a viable task, but incorporating domain-specific knowledge is crucial.more » « less
-
Harnessing commonsense knowledge poses a significant challenge for machine comprehension systems. This paper primarily focuses on incorporating a specific subset of commonsense knowledge, namely, script knowledge. Script knowledge is about sequences of actions that are typically performed by individuals in everyday life. Our experiments were centered around the MCScript dataset, which was the basis of the SemEval-2018 Task 11: Machine Comprehension using Commonsense Knowledge. As a baseline, we utilized our Three-Way Attentive Networks (TriANs) framework to model the interactions among passages, questions, and answers. Building upon the TriAN, we proposed to: (1) integrate a pre-trained language model to capture script knowledge; (2) introduce multi-layer attention to facilitate multi-hop reasoning; and (3) incorporate positional embeddings to enhance the model’s capacity for event-ordering reasoning. In this paper, we present our proposed methods and prove their efficacy in improving script knowledge integration and reasoning.more » « less
An official website of the United States government

