skip to main content


Title: Learning to Sample from Censored Markov Random Fields
We study the problem of learning Censored Markov Random Fields (abbreviated CMRFs), which are Markov Random Fields where some of the nodes are censored (i.e. not observed). We assume the CMRF is high temperature but, crucially, make no assumption about its structure. This makes structure learning impossible. Nevertheless we introduce a new definition, which we call learning to sample, that circumvents this obstacle. We give an algorithm that can learn to sample from a distribution within đťś–đť‘› earthmover distance of the target distribution for any đťś–>0. We obtain stronger results when we additionally assume high girth, as well as computational lower bounds showing that these are essentially optimal.  more » « less
Award ID(s):
2031883
NSF-PAR ID:
10344258
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of Thirty Fourth Conference on Learning Theory
Volume:
134
Page Range / eLocation ID:
3419-3451
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of accurately recovering a matrix B of size M by M, which represents a probability distribution over M^2 outcomes, given access to an observed matrix of "counts" generated by taking independent samples from the distribution B. How can structural properties of the underlying matrix B be leveraged to yield computationally efficient and information theoretically optimal reconstruction algorithms? When can accurate reconstruction be accomplished in the sparse data regime? This basic problem lies at the core of a number of questions that are currently being considered by different communities, including building recommendation systems and collaborative filtering in the sparse data regime, community detection in sparse random graphs, learning structured models such as topic models or hidden Markov models, and the efforts from the natural language processing community to compute "word embeddings". Many aspects of this problem---both in terms of learning and property testing/estimation and on both the algorithmic and information theoretic sides---remain open. Our results apply to the setting where B has a low rank structure. For this setting, we propose an efficient (and practically viable) algorithm that accurately recovers the underlying M by M matrix using O(M) samples} (where we assume the rank is a constant). This linear sample complexity is optimal, up to constant factors, in an extremely strong sense: even testing basic properties of the underlying matrix (such as whether it has rank 1 or 2) requires Omega(M) samples. Additionally, we provide an even stronger lower bound showing that distinguishing whether a sequence of observations were drawn from the uniform distribution over M observations versus being generated by a well-conditioned Hidden Markov Model with two hidden states requires Omega(M) observations, while our positive results for recovering B immediately imply that Omega(M) observations suffice to learn such an HMM. This lower bound precludes sublinear-sample hypothesis tests for basic properties, such as identity or uniformity, as well as sublinear sample estimators for quantities such as the entropy rate of HMMs. 
    more » « less
  2. We study the sample complexity of learning revenue-optimal multi-item auctions. We obtain the first set of positive results that go beyond the standard but unrealistic setting of item-independence. In particular, we consider settings where bidders' valuations are drawn from correlated distributions that can be captured by Markov Random Fields or Bayesian Networks -- two of the most prominent graphical models. We establish parametrized sample complexity bounds for learning an up-to-ε optimal mechanism in both models, which scale polynomially in the size of the model, i.e. the number of items and bidders, and only exponential in the natural complexity measure of the model, namely either the largest in-degree (for Bayesian Networks) or the size of the largest hyper-edge (for Markov Random Fields). We obtain our learnability results through a novel and modular framework that involves first proving a robustness theorem. We show that, given only "approximate distributions" for bidder valuations, we can learn a mechanism whose revenue is nearly optimal simultaneously for all "true distributions" that are close to the ones we were given in Prokhorov distance. Thus, to learn a good mechanism, it suffices to learn approximate distributions. When item values are independent, learning in Prokhorov distance is immediate, hence our framework directly implies the main result of Gonczarowski and Weinberg. When item values are sampled from more general graphical models, we combine our robustness theorem with novel sample complexity results for learning Markov Random Fields or Bayesian Networks in Prokhorov distance, which may be of independent interest. Finally, in the single-item case, our robustness result can be strengthened to hold under an even weaker distribution distance, the Levy distance. 
    more » « less
  3. There has been significant recent work on data-driven algorithms for learning general-purpose grasping policies. However, these policies can consis- tently fail to grasp challenging objects which are significantly out of the distribution of objects in the training data or which have very few high quality grasps. Moti- vated by such objects, we propose a novel problem setting, Exploratory Grasping, for efficiently discovering reliable grasps on an unknown polyhedral object via sequential grasping, releasing, and toppling. We formalize Exploratory Grasping as a Markov Decision Process where we assume that the robot can (1) distinguish stable poses of a polyhedral object of unknown geometry, (2) generate grasp can- didates on these poses and execute them, (3) determine whether each grasp is successful, and (4) release the object into a random new pose after a grasp success or topple the object after a grasp failure. We study the theoretical complexity of Exploratory Grasping in the context of reinforcement learning and present an efficient bandit-style algorithm, Bandits for Online Rapid Grasp Exploration Strategy (BORGES), which leverages the structure of the problem to efficiently discover high performing grasps for each object stable pose. BORGES can be used to complement any general-purpose grasping algorithm with any grasp modality (parallel-jaw, suction, multi-fingered, etc) to learn policies for objects in which they exhibit persistent failures. Simulation experiments suggest that BORGES can significantly outperform both general-purpose grasping pipelines and two other online learning algorithms and achieves performance within 5% of the optimal policy within 1000 and 8000 timesteps on average across 46 challenging objects from the Dex-Net adversarial and EGAD! object datasets, respectively. Initial physical experiments suggest that BORGES can improve grasp success rate by 45% over a Dex-Net baseline with just 200 grasp attempts in the real world. See https://tinyurl.com/exp-grasping for supplementary material and videos. 
    more » « less
  4. Inference-based optimization via simulation, which substitutes Gaussian process (GP) learning for the structural properties exploited in mathematical programming, is a powerful paradigm that has been shown to be remarkably effective in problems of modest feasible-region size and decision-variable dimension. The limitation to “modest” problems is a result of the computational overhead and numerical challenges encountered in computing the GP conditional (posterior) distribution on each iteration. In this paper, we substantially expand the size of discrete-decision-variable optimization-via-simulation problems that can be attacked in this way by exploiting a particular GP—discrete Gaussian Markov random fields—and carefully tailored computational methods. The result is the rapid Gaussian Markov Improvement Algorithm (rGMIA), an algorithm that delivers both a global convergence guarantee and finite-sample optimality-gap inference for significantly larger problems. Between infrequent evaluations of the global conditional distribution, rGMIA applies the full power of GP learning to rapidly search smaller sets of promising feasible solutions that need not be spatially close. We carefully document the computational savings via complexity analysis and an extensive empirical study. Summary of Contribution: The broad topic of the paper is optimization via simulation, which means optimizing some performance measure of a system that may only be estimated by executing a stochastic, discrete-event simulation. Stochastic simulation is a core topic and method of operations research. The focus of this paper is on significantly speeding-up the computations underlying an existing method that is based on Gaussian process learning, where the underlying Gaussian process is a discrete Gaussian Markov Random Field. This speed-up is accomplished by employing smart computational linear algebra, state-of-the-art algorithms, and a careful divide-and-conquer evaluation strategy. Problems of significantly greater size than any other existing algorithm with similar guarantees can solve are solved as illustrations. 
    more » « less
  5. Assigning weights to a large pool of objects is a fundamental task in a wide variety of applications. In this article, we introduce the concept of structured high-dimensional probability simplexes, in which most components are zero or near zero and the remaining ones are close to each other. Such structure is well motivated by (i) high-dimensional weights that are common in modern applications, and (ii) ubiquitous examples in which equal weights -- despite their simplicity -- often achieve favorable or even state-of-the-art predictive performance. This particular structure, however, presents unique challenges partly because, unlike high-dimensional linear regression, the parameter space is a simplex and pattern switching between partial constancy and sparsity is unknown. To address these challenges, we propose a new class of double spike Dirichlet priors to shrink a probability simplex to one with the desired structure. When applied to ensemble learning, such priors lead to a Bayesian method for structured high-dimensional ensembles that is useful for forecast combination and improving random forests, while enabling uncertainty quantification. We design efficient Markov chain Monte Carlo algorithms for implementation. Posterior contraction rates are established to study large sample behaviors of the posterior distribution. We demonstrate the wide applicability and competitive performance of the proposed methods through simulations and two real data applications using the European Central Bank Survey of Professional Forecasters data set and a data set from the UC Irvine Machine Learning Repository (UCI). 
    more » « less