skip to main content

Title: Exposure, hazard, and vulnerability all contribute to Schistosoma haematobium re-infection in northern Senegal
Background Infectious disease risk is driven by three interrelated components: exposure, hazard, and vulnerability. For schistosomiasis, exposure occurs through contact with water, which is often tied to daily activities. Water contact, however, does not imply risk unless the environmental hazard of snails and parasites is also present in the water. By increasing reliance on hazardous activities and environments, socio-economic vulnerability can hinder reductions in exposure to a hazard. We aimed to quantify the contributions of exposure, hazard, and vulnerability to the presence and intensity of Schistosoma haematobium re-infection. Methodology/Principal findings In 13 villages along the Senegal River, we collected parasitological data from 821 school-aged children, survey data from 411 households where those children resided, and ecological data from all 24 village water access sites. We fit mixed-effects logistic and negative binomial regressions with indices of exposure, hazard, and vulnerability as explanatory variables of Schistosoma haematobium presence and intensity, respectively, controlling for demographic variables. Using multi-model inference to calculate the relative importance of each component of risk, we found that hazard (Ʃw i = 0.95) was the most important component of S . haematobium presence, followed by vulnerability (Ʃw i = 0.91). Exposure (Ʃw i = 1.00) was the most important component of S . haematobium intensity, followed by hazard (Ʃw i = 0.77). Model averaging quantified associations between each infection outcome and indices of exposure, hazard, and vulnerability, revealing a positive association between hazard and infection presence (OR = 1.49, 95% CI 1.12, 1.97), and a positive association between exposure and infection intensity (RR 2.59–3.86, depending on the category; all 95% CIs above 1) Conclusions/Significance Our findings underscore the linkages between social (exposure and vulnerability) and environmental (hazard) processes in the acquisition and accumulation of S . haematobium infection. This approach highlights the importance of implementing both social and environmental interventions to complement mass drug administration.  more » « less
Award ID(s):
2011179 2024383 2022321
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Lamberton, Poppy H.
Date Published:
Journal Name:
PLOS Neglected Tropical Diseases
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background Water resources development promotes agricultural expansion and food security. But are these benefits offset by increased infectious disease risk? Dam construction on the Senegal River in 1986 was followed by agricultural expansion and increased transmission of human schistosomes. Yet the mechanisms linking these two processes at the individual and household levels remain unclear. We investigated the association between household land use and schistosome infection in children. Methods We analyzed cross-sectional household survey data ( n  = 655) collected in 16 rural villages in August 2016  across demographic, socio-economic and land use dimensions, which were matched to Schistosoma haematobium ( n  = 1232) and S. mansoni ( n  = 1222) infection data collected from school-aged children. Mixed effects regression determined the relationship between irrigated area and schistosome infection presence and intensity. Results Controlling for socio-economic and demographic risk factors, irrigated area cultivated by a household was associated with an increase in the presence of S. haematobium infection (odds ratio [ OR ] = 1.14; 95% confidence interval [95% CI ]: 1.03–1.28) but not S. mansoni infection ( OR  = 1.02; 95% CI : 0.93–1.11). Associations between infection intensity and irrigated area were positive but imprecise ( S. haematobium: rate ratio [ RR ] = 1.05; 95% CI : 0.98–1.13, S. mansoni : RR  = 1.09; 95% CI : 0.89–1.32). Conclusions Household engagement in irrigated agriculture increases individual risk of S. haematobium but not S. mansoni infection. Increased contact with irrigated landscapes likely drives exposure, with greater impacts on households relying on agricultural livelihoods. 
    more » « less
  2. Secor, W. Evan (Ed.)
    Schistosome parasites infect more than 200 million people annually, mostly in sub-Saharan Africa, where people may be co-infected with more than one species of the parasite. Infection risk for any single species is determined, in part, by the distribution of its obligate intermediate host snail. As the World Health Organization reprioritizes snail control to reduce the global burden of schistosomiasis, there is renewed importance in knowing when and where to target those efforts, which could vary by schistosome species. This study estimates factors associated with schistosomiasis risk in 16 villages located in the Senegal River Basin, a region hyperendemic for Schistosoma haematobium and S . mansoni . We first analyzed the spatial distributions of the two schistosomes’ intermediate host snails ( Bulinus spp. and Biomphalaria pfeifferi , respectively) at village water access sites. Then, we separately evaluated the relationships between human S . haematobium and S . mansoni infections and (i) the area of remotely-sensed snail habitat across spatial extents ranging from 1 to 120 m from shorelines, and (ii) water access site size and shape characteristics. We compared the influence of snail habitat across spatial extents because, while snail sampling is traditionally done near shorelines, we hypothesized that snails further from shore also contribute to infection risk. We found that, controlling for demographic variables, human risk for S . haematobium infection was positively correlated with snail habitat when snail habitat was measured over a much greater radius from shore (45 m to 120 m) than usual. S . haematobium risk was also associated with large, open water access sites. However, S . mansoni infection risk was associated with small, sheltered water access sites, and was not positively correlated with snail habitat at any spatial sampling radius. Our findings highlight the need to consider different ecological and environmental factors driving the transmission of each schistosome species in co-endemic landscapes. 
    more » « less
  3. Abstract STUDY QUESTION

    To what extent is preconception maternal or paternal coronavirus disease 2019 (COVID-19) vaccination associated with miscarriage incidence?


    COVID-19 vaccination in either partner at any time before conception is not associated with an increased rate of miscarriage.


    Several observational studies have evaluated the safety of COVID-19 vaccination during pregnancy and found no association with miscarriage, though no study prospectively evaluated the risk of early miscarriage (gestational weeks [GW] <8) in relation to COVID-19 vaccination. Moreover, no study has evaluated the role of preconception vaccination in both male and female partners.


    An Internet-based, prospective preconception cohort study of couples residing in the USA and Canada. We analyzed data from 1815 female participants who conceived during December 2020–November 2022, including 1570 couples with data on male partner vaccination.


    Eligible female participants were aged 21–45 years and were trying to conceive without use of fertility treatment at enrollment. Female participants completed questionnaires at baseline, every 8 weeks until pregnancy, and during early and late pregnancy; they could also invite their male partners to complete a baseline questionnaire. We collected data on COVID-19 vaccination (brand and date of doses), history of SARS-CoV-2 infection (yes/no and date of positive test), potential confounders (demographic, reproductive, and lifestyle characteristics), and pregnancy status on all questionnaires. Vaccination status was categorized as never (0 doses before conception), ever (≥1 dose before conception), having a full primary sequence before conception, and completing the full primary sequence ≤3 months before conception. These categories were not mutually exclusive. Participants were followed up from their first positive pregnancy test until miscarriage or a censoring event (induced abortion, ectopic pregnancy, loss to follow-up, 20 weeks’ gestation), whichever occurred first. We estimated incidence rate ratios (IRRs) for miscarriage and corresponding 95% CIs using Cox proportional hazards models with GW as the time scale. We used propensity score fine stratification weights to adjust for confounding.


    Among 1815 eligible female participants, 75% had received at least one dose of a COVID-19 vaccine by the time of conception. Almost one-quarter of pregnancies resulted in miscarriage, and 75% of miscarriages occurred <8 weeks’ gestation. The propensity score-weighted IRR comparing female participants who received at least one dose any time before conception versus those who had not been vaccinated was 0.85 (95% CI: 0.63, 1.14). COVID-19 vaccination was not associated with increased risk of either early miscarriage (GW: <8) or late miscarriage (GW: 8–19). There was no indication of an increased risk of miscarriage associated with male partner vaccination (IRR = 0.90; 95% CI: 0.56, 1.44).


    The present study relied on self-reported vaccination status and infection history. Thus, there may be some non-differential misclassification of exposure status. While misclassification of miscarriage is also possible, the preconception cohort design and high prevalence of home pregnancy testing in this cohort reduced the potential for under-ascertainment of miscarriage. As in all observational studies, residual or unmeasured confounding is possible.


    This is the first study to evaluate prospectively the relation between preconception COVID-19 vaccination in both partners and miscarriage, with more complete ascertainment of early miscarriages than earlier studies of vaccination. The findings are informative for individuals planning a pregnancy and their healthcare providers.


    This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institute of Health [R01-HD086742 (PI: L.A.W.); R01-HD105863S1 (PI: L.A.W. and M.L.E.)], the National Institute of Allergy and Infectious Diseases (R03-AI154544; PI: A.K.R.), and the National Science Foundation (NSF-1914792; PI: L.A.W.). The funders had no role in the study design, data collection, analysis and interpretation of data, writing of the report, or the decision to submit the paper for publication. L.A.W. is a fibroid consultant for AbbVie, Inc. She also receives in-kind donations from Swiss Precision Diagnostics (Clearblue home pregnancy tests) and (fertility apps). M.L.E. received consulting fees from Ro, Hannah, Dadi, VSeat, and Underdog, holds stock in Ro, Hannah, Dadi, and Underdog, is a past president of SSMR, and is a board member of SMRU. K.F.H. reports being an investigator on grants to her institution from UCB and Takeda, unrelated to this study. S.H.-D. reports being an investigator on grants to her institution from Takeda, unrelated to this study, and a methods consultant for UCB and Roche for unrelated drugs. The authors report no other relationships or activities that could appear to have influenced the submitted work.



    more » « less
  4. Background: Schistosomiasis is an emerging disease associated with changes to the environment that have increased human contact rates with disease-causing parasites, flatworms that are released from freshwater snails. For example, schistosomiasis remains a major public health problem in Northern Senegal, where prevalence in schoolchildren often reaches 90%. Aim: This study focuses on the impact of seasonality on the risk of human exposure (RHE) to Schistosoma mansoni, defined as the total number of cercariae (the free-living life stage that infects humans) shed from all Biomphalaria pfeifferi snails collected at a site using standardized methods. We focus on RHE because it is rarely quantified and a recent study demonstrated that snails stop shedding cercariae when snail densities increase and thus per capita snail resources become limited [2], suggesting that densities of snails might not be directly proportional to RHE to schistosomes. Method: We sampled four water access points in three villages every other week during the early (Dry1) and later dry seasons (Dry2) and the rainy season, quantifying the abundance of infected and non-infected snail intermediate hosts, cercariae released per infected snail, and water chemistry. We used simple and multiple linear regressions to assess how seasonality and environmental parameters affect non-infected and infected snail abundance and RHE. Results: Although RHE was found across all seasons, the abundance of infected and non-infected snail intermediate hosts and cercariae, as well as prevalence (23.71%), were all highest in the rainy season. In the rainy season, RHE was positively associated with the density of snail hosts and their periphyton food resource. Conclusion: Although previous studies have examined the influence of seasonality on snail densities, few studies have explored the effects of seasonality on cercarial densities, which is the primary source of infection to humans. Our study demonstrates that cercarial densities are greater in the rainy season than in the early or late dry seasons. Given that cercarial densities directly pose risk of infection to humans, unlike non-infected or infected snails, these finding should help to inform decision making and schistosomiasis control efforts in West Africa. 
    more » « less
  5. Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the causal agent for COVID-19, is a communicable disease spread through close contact. It is known to disproportionately impact certain communities due to both biological susceptibility and inequitable exposure. In this study, we investigate the most important health, social, and environmental factors impacting the early phases (before July, 2020) of per capita COVID-19 transmission and per capita all-cause mortality in US counties. We aggregate county-level physical and mental health, environmental pollution, access to health care, demographic characteristics, vulnerable population scores, and other epidemiological data to create a large feature set to analyze per capita COVID-19 outcomes. Because of the high-dimensionality, multicollinearity, and unknown interactions of the data, we use ensemble machine learning and marginal prediction methods to identify the most salient factors associated with several COVID-19 outbreak measure. Our variable importance results show that measures of ethnicity, public transportation and preventable diseases are the strongest predictors for both per capita COVID-19 incidence and mortality. Specifically, the CDC measures for minority populations, CDC measures for limited English, and proportion of Black- and/or African-American individuals in a county were the most important features for per capita COVID-19 cases within a month after the pandemic started in a county and also at the latest date examined. For per capita all-cause mortality at day 100 and total to date, we find that public transportation use and proportion of Black- and/or African-American individuals in a county are the strongest predictors. The methods predict that, keeping all other factors fixed, a 10% increase in public transportation use, all other factors remaining fixed at the observed values, is associated with increases mortality at day 100 of 2012 individuals (95% CI [1972, 2356]) and likewise a 10% increase in the proportion of Black- and/or African-American individuals in a county is associated with increases total deaths at end of study of 2067 (95% CI [1189, 2654]). Using data until the end of study, the same metric suggests ethnicity has double the association as the next most important factors, which are location, disease prevalence, and transit factors. Our findings shed light on societal patterns that have been reported and experienced in the U.S. by using robust methods to understand the features most responsible for transmission and sectors of society most vulnerable to infection and mortality. In particular, our results provide evidence of the disproportionate impact of the COVID-19 pandemic on minority populations. Our results suggest that mitigation measures, including how vaccines are distributed, could have the greatest impact if they are given with priority to the highest risk communities. 
    more » « less