skip to main content


Title: Stabilization of Neural Network Models for VIV Force Data Using Decoupled, Linear Feedback
The hydrodynamic forces on an oscillating circular cylinder are predicted using neural networks under flow conditions where Vortex-Induced Vibrations (VIV) are known to occur. The derived neural network approximators are then incorporated in a dynamical model that allows prediction of the cylinder motion given flow conditions and initial conditions. Using experimental data, a minimum-least-squares compensator is tuned that includes linear stiffness and damping su-perimposed with a constant force offset. The compensator is decoupled, i.e., with equations in-dependent for each degree of freedom. By applying the neural network approximators and the derived compensator simulated experiments can be performed. These simulated experiments show that the compensator which cancels the linear components and any bias in the hydrody-namic forces effectively stabilizes the VIV motion. To support this time-domain analysis is per-formed along with phase-plane investigations. Maximum Lyapunov exponent analysis is also shown.  more » « less
Award ID(s):
1809182
NSF-PAR ID:
10344585
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Marine Science and Engineering
Volume:
10
Issue:
2
ISSN:
2077-1312
Page Range / eLocation ID:
272
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A computational approach based on a k-ω delayed detached eddy simulation model for predicting aerodynamic loads on a smooth circular cylinder is verified against experiments. Comparisons with experiments are performed for flow over a rigidly mounted (static) cylinder and for an elastically-mounted rigid cylinder oscillating in the transverse direction due to vortex-induced vibration (VIV). For the static cases, measurement data from the literature is used to validate the predictions for normally incident flow. New experiments are conducted as a part of this study for yawed flow, where the cylinder axis is inclined with respect to the inflow velocity at the desired yaw angle, β = 30◦. Good agreement is observed between the predictions and measurements for mean and rms surface pressure. Three yawed flow cases (β = 15◦, 30◦, & 45◦) are simulated and the results are found to be independent of β (independence principle) when the flow speed normal to the cylinder axis is selected as the reference velocity scale. Dynamic (VIV) simulations for an elastically-mounted rigid cylinder are performed by coupling the flow solver with a solid dynamics solver where the cylinder motion is modeled as a mass–spring–damper system. The simulations accurately predict the displacement amplitude and unsteady loading over a wide range of reduced velocity, including the region where ‘‘lock-in’’ (synchronization) occurs. VIV simulations are performed at two yaw angles, β = 0◦ and 45◦ and the independence principle is found to be valid over the range of reduced velocities tested with a slightly higher discrepancy when the vortex shedding frequency is close to the natural frequency of the system. 
    more » « less
  2. Abstract

    The spanwise undulated cylinder geometry inspired by seal whiskers has been shown to alter shedding frequency and reduce fluid forces significantly compared to smooth cylindrical geometry. Prior research has parameterized the whisker-inspired geometry and demonstrated the relevance of geometric variations on force reduction properties. Among the geometric parameters, undulation wavelength was identified as a significant contributor to forcing changes. To analyze the effect of undulation wavelength, a thorough investigation isolating changes in wavelength is performed to expand upon previous research that parameterized whisker-inspired geometry and the relevance of geometric variations on the force reduction properties. A set of five whisker-inspired models of varying wavelength are computationally simulated at a Reynolds number of 250 and compared with an equivalent aspect ratio smooth elliptical cylinder. Above a critical non-dimensional value, the undulation wavelength reduces the amplitude and frequency of vortex shedding accompanied by a reduction in oscillating lift force. Frequency shedding is tied to the creation of wavelength-dependent vortex structures which vary across the whisker span. These vortices produce distinct shedding modes in which the frequency and phase of downstream structures interact to decrease the oscillating lift forces on the whisker model with particular effectiveness around the wavelength values typically found in nature. The culmination of these location-based modes produces a complex and spanwise-dependent lift frequency spectra at those wavelengths exhibiting maximum force reduction. Understanding the mechanisms of unsteady force reduction and the relationship between undulation wavelength and frequency spectra is critical for the application of this geometry to vibration tuning and passive flow control for vortex-induced vibration (VIV) reduction.

     
    more » « less
  3. null (Ed.)
    Cables of suspension, cable-stayed and tied-arch bridges, suspended roofs, and power transmission lines are prone to moderate to large-amplitude vibrations in wind because of their low inherent damping. Structural or fatigue failure of a cable, due to these vibrations, pose a significant threat to the safety and serviceability of these structures. Over the past few decades, many studies have investigated the mechanisms that cause different types of flow-induced vibrations in cables such as rain-wind induced vibration (RWIV), vortex-induced vibration (VIV), iced cable galloping, wake galloping, and dry-cable galloping that have resulted in an improved understanding of the cause of these vibrations. In this study, the parameters governing the turbulence-induced (buffeting) and motion-induced wind loads (self-excited) for inclined and yawed dry cables have been identified. These parameters facilitate the prediction of their response in turbulent wind and estimate the incipient condition for onset of dry-cable galloping. Wind tunnel experiments were performed to measure the parameters governing the aerodynamic and aeroelastic forces on a yawed dry cable. This study mainly focuses on the prediction of critical reduced velocity 〖(RV〗_cr) as a function of equivalent yaw angle (*) and Scruton number (Sc) through measurement of aerodynamic- damping and stiffness. Wind tunnel tests using a section model of a smooth cable were performed under uniform and smooth/gusty flow conditions in the AABL Wind and Gust Tunnel located at Iowa State University. Static model tests for equivalent yaw angles of 0º to 45º indicate that the mean drag coefficient 〖(C〗_D) and Strouhal number (St) of a yawed cable decreases with the yaw angle, while the mean lift coefficient 〖(C〗_L) remains zero in the subcritical Reynolds number (Re) regime. Dynamic one degree-of-freedom model tests in across-wind and along-wind directions resulted in the identification of buffeting indicial derivative functions and flutter derivatives of a yawed cable for a range of equivalent yaw angles. Empirical equations for mean drag coefficient, Strouhal number, buffeting indicial derivative functions and critical reduced velocity for dry-cable galloping are proposed for yawed cables. The results indicate a critical equivalent yaw angle of 45° for dry-cable galloping. A simplified design procedure is introduced to estimate the minimum damping required to arrest dry-cable galloping from occurring below the design wind speed of the cable structure. Furthermore, the results from this study can be applied to predict the wind load and response of a dry cable at a specified wind speed for a given yaw angle. 
    more » « less
  4. Pedestrian regulation can prevent crowd accidents and improve crowd safety in densely populated areas. Recent studies use mobile robots to regulate pedestrian flows for desired collective motion through the effect of passive human-robot interaction (HRI). This paper formulates a robot motion planning problem for the optimization of two merging pedestrian flows moving through a bottleneck exit. To address the challenge of feature representation of complex human motion dynamics under the effect of HRI, we propose using a deep neural network to model the mapping from the image input of pedestrian environments to the output of robot motion decisions. The robot motion planner is trained end-to-end using a deep reinforcement learning algorithm, which avoids hand-crafted feature detection and extraction, thus improving the learning capability for complex dynamic problems. Our proposed approach is validated in simulated experiments, and its performance is evaluated. The results demonstrate that the robot is able to find optimal motion decisions that maximize the pedestrian outflow in different flow conditions, and the pedestrian-accumulated outflow increases significantly compared to cases without robot regulation and with random robot motion. 
    more » « less
  5. Muscle weakness and loss of independent joint control are the 2 most common neuromotor impairments after stroke. While there are a number of approaches to improve poststroke muscle weakness, there are currently no rehabilitation strategies that directly target a patient’s inability to match and independently activate the normal patterned muscle coordination strategies, or “muscle synergies.” Our goal is to develop an EMG-based controller for retraining healthy muscle synergies in patients with stroke-related disabilities. The controller can be integrated into rehabilitation robots for their ability to structure the robot’s force output based on input EMG activity. However, developing such a controller would require a clear understanding of the relationship between the applied force from a rehabilitation robot and the resulting changes to a patient’s muscle synergies. Therefore, this study was performed to quantify how the muscle synergies of horizontal planar-reaching are affected by direction of an applied force at the end-effector (ie, hand). A 2 DOF, 10 muscle model was developed in MATLAB using parameters obtained from the OpenSim (version 3.3) open source software system. Simulation experiments were then performed in MATLAB to investigate the relationship between the applied force and the resulting muscle synergies. The simulated event was composed of several trials of the same righthanded, planar, multidirectional reaching task from 0° (to the right) to 360°. Each trial applied a different steering force direction at the subject’s hand, varying from −45° to 45° relative to the reaching direction. The simulation trials were also validated by evaluating the EMG patterns of a healthy subject when performing the same reaching task with varying steering force directions. For the 0° steering force trials, the muscle synergies and their activation timings were extracted using nonnegative matrix factorization (NMF). For all other trials, the synergy matrix was fixed and the activation timings were extracted from the product of the EMG of that trial and the pseudo-inverse of the synergy matrix from the 0° steering force trial. By fixing the synergy matrix in the trials with steering forces, we can directly track activation changes of a certain synergy as steering force is varied. For both simulation and experimental trials, circular statistics revealed a linear relationship between changes in steering force direction and principal direction of synergy activation. These results suggest that the activation of a synergy can be controlled directly by the direction of an applied steering force. This has relevant implications in synergy-based controller design because a computer can easily manipulate a patient’s muscle synergies and track the changes while avoiding the computational expense of NMF. In addition, similar analysis could be used to extract the relationship between applied forces and changes in synergies for other types of motion. 
    more » « less